
HAL Id: hal-03463035
https://hal.inria.fr/hal-03463035

Submitted on 2 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tool demo: fine-grained run-time reflection in Python
with Reflectivipy

Vincent Aranega, Steven Costiou, Marcus Denker

To cite this version:
Vincent Aranega, Steven Costiou, Marcus Denker. Tool demo: fine-grained run-time reflection in
Python with Reflectivipy. [Research Report] Inria. 2021. �hal-03463035�

https://hal.inria.fr/hal-03463035
https://hal.archives-ouvertes.fr


Tool demo: fine-grained run-time reflection in
Python with Reflectivipy

Vincent Aranega
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189 CRIStAL
F-59000 Lille, France
vincent.aranega@inria.fr

Steven Costiou
Inria, Univ. Lille, CNRS, Centrale Lille,

UMR 9189 CRIStAL
F-59000 Lille, France
steven.costiou@inria.fr

Marcus Denker
Inria, Univ. Lille, CNRS, Centrale Lille,

UMR 9189 CRIStAL
F-59000 Lille, France
marcus.denker@inria.fr

Abstract
Reflectivipy is a Python implementation of sub-method, par-
tial behavioral reflection (SPBR). SPBR provides selective
reflection operations applicable to sub-elements of methods
(e.g., sub-expressions). SPBR helps in run-time code instru-
mentation with various application, from advanced debug-
ging to hot patching of running programs. In this tool paper,
we briefly describe SPBR and its Reflectivipy API and imple-
mentation. We illustrate Reflectivipy through two examples:
first we build and demonstrate a basic object-centric debug-
ger and describe how SPBR favors its implementation and
second, we hot patch a running REST server.

CCS Concepts: • Software and its engineering → Main-
taining software; Object oriented development; Development
frameworks and environments; Object oriented frameworks;
Software maintenance tools; Software notations and tools.

Keywords: debugging, code instrumentation, reflection,
AST transformation, hot-patching

1 Introduction
Sub-method, partial behavioral reflection [3] (or SPBR) is
a reflection technique for fine-grained instrumentation of
object-oriented programs. The technique consists of annotat-
ing AST nodes with meta-behavior to instrument programs.
At run time, execution of annotated nodes trigger that meta-
behavior, thus executing the instrumentation. In theory, any
node can be annotated and any run-time information can
be requested. Consequently, it is possible to instrument sub-
expressions, (e.g., a message send in an assignment) and to
request any contextual meta-data to be used in the instru-
mentation (e.g., the receiver of the message).
The technique has successfully been integrated to

Pharo [1] as Reflectivity [3], inspired by its early implemen-
tation as Reflex [12, 14]. Reflectivity has been used in more
than 20 research projects to implement fine-grained and cus-
tomized program instrumentation. Many of these projects
are about exploring, designing, and implementing new de-
bugging tools, hot-patching or unanticipated live-program
adaptation techniques, and dynamic analysis tools. In all
these projects, SPBR is the fundamental support for imple-
menting fine-grained run-time instrumentation.

Today, efforts are being made to implement SPBR in other
technologies to bring its benefits to a larger audience. In
this paper, we present Reflectivipy, a python implementation
of the technique. We illustrate the use of Reflectivipy on
two examples: the implementation of a simple object-centric
debugger, and the hot-patching of Flask1, a web framework.

2 Sub-method, partial behavioral
reflection

SPBR consists in annotating AST nodes at run time with
metalinks. Metalinks describe calls to a meta-object to be
executed for the operation defined by the AST node. They
define when to call (before, after, instead) and which infor-
mation to reify and pass to the meta-object. That meta-object
implements and executes instrumentation behavior, such as
debugging operation.

0x326A
0x1752

0x76A9

...

...

0x60B8

0x326A
0x1752

0x76A9

...

...

originalMethod

original AST modified AST

original 
method

reflective
method

meta-object

rewrite

compile
ast

link

Figure 1. Run-time method instrumentation with SPBR.

Installing metalinks leads to the code being dynamically
transformed, recompiled, and installed. This allows the sys-
tem to be annotated at run time (Figure 1). The main abstrac-
tions we are working with are:

Metalink. The object that associates a meta-object with
on one or more AST Nodes.

Meta-object. The meta-object is called by the opera-
tions that the link is installed on.

Reification. Metalinks can ask for information to be
passed to the meta-object. These are, e.g., the argu-
ments of a message send or the name of a variable.

AST Node. Anode in the ASTmodels an operation, such
as message sends, assignments, etc. MetaLinks are non-
textual annotations on the AST node.

1https://flask.palletsprojects.com/en/2.0.x/

https://flask.palletsprojects.com/en/2.0.x/


Conference’17, July 2017, Washington, DC, USA Vincent Aranega, Steven Costiou, and Marcus Denker

3 Reflectivipy in a Nutshell
Reflectivipy is a Python implementation of sub-method, par-
tial behavioral reflection [3]2. In this section, we briefly de-
scribe its API and illustrate its usage through basic examples.
Then, we describe its implementation and we summarize the
key points of this implementation’s requirements.
3.1 Reflectivipy API
We illustrate Reflectivity’s API by logging the execution of
the print(...) instruction from a foo() method:

class ExampleClass(object):

def foo(self):

print('Executing foo')

We first create a class whose instances will play the role of
meta-objects that will do the logging:
class MetaLogger(object):

def log(self, sender, node):

print("I'm here, called by", sender, "from node", node)

We then instantiate a metalink:

metalink = reflectivipy.MetaLink(MetaLogger(), selector='log

', control='before', arguments=('sender', 'node'))

The metalink is configured with a meta-object, here an in-
stance of ourMetaLogger. The selector represents the mes-
sage to be sent to the meta-object when the metalink fires.
The ctrl argument controls when the metalink must fire, rel-
atively to the AST node. It can be before, instead or after the
execution of that node. Finally, the args argument specifies
the reifications to pass as arguments to the meta-behavior.
Various reifications are proposed3 (e.g., sender, node, value)
and the reification list is extensible by the end-user.
The metalink has to annotate an AST node. To access

the AST of a method, Reflectivipy proposes the reflec-
tive_ast_for_method() function. This function takes as argu-
ments an object and a selector, and returns the AST of the
method corresponding to the selector. This AST can then be
navigated to retrieve a particular node.

rf_ast = reflectivipy.reflective_ast_for_method(

ExampleClass, 'foo')

node = rf_ast.body[0].body[0]

The returned method is bound to the object that is passed as
parameter. If that object is an instance of a class, the accessed
AST will be bound to this instance, and metalinks annotating
that AST will only fire for that particular instance.
Finally, the link() function attaches a metalink to an AST

node, and unlink() method uninstalls a specific link:

link(metalink, node)

a = ExampleClass()

2https://github.com/StevenCostiou/reflectivipy
3https://github.com/StevenCostiou/reflectivipy/blob/master/
reflectivipy/reifications.py#L130-L143

a.foo() #calls log() before the first statement of foo()

metalink.uninstall()

3.2 Implementation
Reflectivipy is based on run-time AST transformation4. It ma-
nipulates ASTs to insert message nodes whose receiver is the
metalink’s meta-object, and whose selector is the metalink’s
message selector. We describe how these AST manipulations
implement SPBR and we summarize its requirements.

AST transformations. When a metalink is installed, it
triggers a transformation of the AST node it annotates:

• It isolates the node to surround it by a meta-level call,
• it introduces intermediate variables nodes to store reifi-
cations specified by the metalink, that are passed to
the meta-level call as parameters,

• it introduces a message send to the metalink’s meta-
object (i.e., the meta-level call).

The newAST generated by this transformation is compiled
to a new method. By default, transformations are effective
for all instances of the class defining the original method.
The new method then replaces the original one in the at-
tributes of that class. When the original method is bound
to a specific instance, the new method replaces the original
one in that instance’s attribute dictionary (which scopes the
transformation to that instance).

1 # Original method

2 def hello():

3 return "Hello world"

4 # Method after AST transformation

5 def hello():

6 temp_Return_4 = __rf_method__.lookup_link(139842966411728)

.metaobject.return_me()

7 return temp_Return_4

Listing 1. New method after AST transformation.

Listing 1 illustrates this transformation. Imagine that we
define a metalink configured to replace a node execution
by sending the message return_me to a given meta-object.
Installing this metalink on the constant node "Hello world"
(line 3) of the hello() method (line 1) will transform that
method to another hello() method (line 5). The call to the
meta-object is inserted line 6, and its result is stored into
a new temporary variable. This new temporary variable is
returned instead of the original "Hello world" value.

Reflective methods. Each transformed method is bound
to a reflective method object (__rf_method__ in Listing 1).
Reflective methods preserve the original methods, provide
metalinks access and manage their (un)installation. The first
time an AST is transformed, a reflective method is created
4AST transformations are done with the default Python Node-
Transformer class https://docs.python.org/3.10/library/ast.html#ast.
NodeTransformer, compilation and installation of transformed methods
are done with standard Python tools and libraries.

https://github.com/StevenCostiou/reflectivipy
https://github.com/StevenCostiou/reflectivipy/blob/master/reflectivipy/reifications.py#L130-L143
https://github.com/StevenCostiou/reflectivipy/blob/master/reflectivipy/reifications.py#L130-L143
https://docs.python.org/3.10/library/ast.html#ast.NodeTransformer
https://docs.python.org/3.10/library/ast.html#ast.NodeTransformer


Tool demo: fine-grained run-time reflection in Python with Reflectivipy Conference’17, July 2017, Washington, DC, USA

and associated to the method compiled from that AST. Re-
flective methods are in charge of:

• Transforming and compiling ASTs,
• restoring original methods whose last link is removed,
• maintaining a connection between an original AST
and its latest transformation,

• providing run-time access to installed metalinks.

Metalinks are referenced in reflective methods by a unique
id, and accessed at run time through id lookups (line 6). To
maintain a connection between ASTs and their transformed
version, reflective methods use twin ASTs.

Twin ASTs. When an original AST is transformed, that
AST is preserved and tied to the transformed AST (i.e., its
twin). The source of transformations is always an original
AST and the metalinks that annotate it. Each transforma-
tion always produces a new twin that replaces the previous
one. This separates the AST that developers annotate (the
original) and the transformed one (the twin) that is executed
at run time. This allows reflective methods to keep track of
installed metalinks, and to dynamically (un)install metalinks.

Implementation requirements. Table 1 presents SPBR
implementation requirements. Introspection is necessary to

Table 1. SPBR implementation requirements.

Requirement Target language support

AST annotation Access to methods’ ASTs
Reifications Access to the execution stack
Metalink installation Run-time recompilation
On-the-fly metalinks Live interaction or DSU
Per-instance metalinks Instance migration, intercession

access ASTs at installation time, and to reify information at
run time. Run-time recompilation is necessary to dynami-
cally replace methods, since metalinks are installed after the
program started. To define and install on-the-fly (or unantici-
pated) metalinks, the language must support live interaction,
such as live programming [10] or online debugging [7]. To
dynamically define new meta-objects, the language must
support the addition of classes at run time (or Dynamic Soft-
ware Update (DSU) [9, 15]). Per-instance metalinks require
an intercession mechanism able to modify methods for sin-
gle instances. In Python, methods can be modified in the
local dictionary of the instances themselves. Otherwise, it
requires instance migration from the instance’s base class to
a subclass where the transformed methods are installed [? ].

4 Reflectivipy in practice
We illustrate Reflectivipy by implementing an object-centric
breakpoint and hot-patching of a running REST web server.

4.1 Object-centric Debugging for Python
Object-centric debugging [11] scopes breakpoints to specific
objects and their interactions instead of breaking the execu-
tion for all objects of the same kind. This helps developers
to focus their debugging investigations on precise parts of
their program. In this demonstration, we illustrate how we
use Reflectivipy to implement a breakpoint that interrupts
an execution when a precise object receives a message. This
breakpoint builds a meta-object that breaks the execution,
configures a metalink to call that meta-object, and installs
this metalink on an AST of an object’s method.

Implementing an object-centric breakpoint. We im-
plemented the object-centric do_halt breakpoint command.
It takes two arguments: a string referring to an instance’s
method (e.g., my_instance.my_method), and the identifier
of the AST node on which we want to install the breakpoint.
Listing 2 shows the implementation of the do_halt command.
We first acquire the AST of the method pointed by the

arguments of the command (summarized line 3). Because
the first argument points to a method bound to a specific
instance, the acquired node is also bound to that instance.
Therefore, the AST transformation will be local to that in-
stance, and the breakpoint will be scoped to that instance.
Then, we instantiate a metalink (line 4). This metalink

will send the halt message to an OCBreakpoint meta-object
before the target node. The metalink will also reify itself
(arguments=[’link’]) and pass that reification as an argument
of the halt message. We install the metalink (line 5).

1 class OCPdb(Pdb):

2 def do_halt(self, args):

3 node = #parses arguments to lookup the selected node

4 metalink = MetaLink(OCBreakpoint(), 'halt', arguments=['

link'], control='before')

5 link(metalink, node)

Listing 2. The do_halt command to set object-centric
breakpoints.

At run time, when the target instance will execute the
method transformed by the metalink, the metalink will call
the halt method of its associated OCBreakpoint meta-object.
This meta-object is implemented as in Listing 3. In the

halt method, we create an instance of the OCPdb debugger
(line 3). This OCPdb is an extension of the basic Pdb Python
debugger we built to handle object-centric breakpoints.

We first use the control parameter of the metalink (before,
after or instead) to compute a line adjustment for debugger
display (line 4). When the execution breaks,OCPdb uses this
line adjustement to find which line to display from the origi-
nal method instead of the Reflectivipy transformed version.
We then use OCPdb to set a breakpoint in the previous

executed frame (line 5), i.e., in the executing instrumented
method. At run time, it configures the calling frame so that



Conference’17, July 2017, Washington, DC, USA Vincent Aranega, Steven Costiou, and Marcus Denker

the execution immediately breaks when the halt method
returns to that frame.

1 class OCBreakpoint(object):

2 def halt(self, link):

3 ocpdb = OCPdb()

4 ocpdb.line_adjust = self.adjustment[link.control]

5 ocpdb.set_trace(sys._getframe().f_back)

Listing 3. Object-centric breakpoint implementation.

Object-centric debugging workflow. When a developer
wants to set an object-centric breakpoint, she needs to select
an AST node and an object. To enable this, we extended the
Python debugger REPL with two new commands: do_halt
(described above) and display_ast. This command displays
the AST of a method with labels, to which developers refer
to for selecting a node. The object-centric workflow is:

1. Use the native Python set_trace() method to set a
first breakpoint to halt the program in a place where
to find an object of interest.

2. Select an AST node from amethod bound to that object,
using the display_ast command.

3. Install an object-centric breakpoint with the do_halt
command, with as parameters the method reference
and the selected node identifier.

An object-centric debugging example. To demonstrate
our debugger, we debug a program that transforms a shuf-
fled list of names from lowercase to uppercase. Listing 4
shows the main part of the program. A tuple of string
names is defined (more than 1000 names) then each name is
wrapped into anObscure object providing an upper()method
(lines 1− 2). The collection is shuffled (line 3) and each name
is displayed in uppercase in the loop under (lines 4 − 5).

1 wordlist = (..., "jodie", "john", "gina", "nallely")

2 tab = [Obscure(x) for x in wordlist]

3 random.shuffle(tab)

4 for x in tab:

5 print(x.upper())

Listing 4. Program under debug.

The program execution outputs a list of a thousand names
(Figure 2) where one name is not set as uppercase: the name
nallely is not transformed properly.
Standard breakpoints in upper() would break for each

object of the collection. Conditional breakpoints could be
used, but our objects are simple. It might be harder to express
stopping conditions in more complex programs. Let us use
an object-centric breakpoint!

We first set a breakpoint before the for loop. In the debug-
ger, we use display_ast (Figure 3) to label all nodes and select
the node wewant to stop on.Wewant to set an object-centric
breakpoint on theAugAssign node in the uppermethod (node

6 in Figure 3) for the nallely string object. Since the nallely
string is the last object in our collection, we do:
halt tab[-1].upper, 6

This will interrupt the execution when upper is called on the
nallely string, just before node 6 is executed.
We resume the execution which stops exactly when the

nallely string object is accessed in the upper method of the
Obscure class (Figure 4). A program state inspection reveals
that the second lowercase letter is not a latin letter, but an
UTF-8 letter looking like a latin letter (Figure 5)!

4.2 Hot-patching a REST server using Reflectivipy
In this example, we hot-patch a running Flask REST server
by dynamically changing the behavior of a sub-expression
of the server code. This code (Listing 5) defines an end-point
(line 3) on a root URL answering a simple "Hello World".

1 app = Flask('simpleHelloWorld')

2 class Container(object):

3 @app.route("/")

4 def hello():

5 return "Hello World"

Listing 5. A simple REST endpoint in Flask.

We want to change the value of the string returned by
the default server route /. However, Flask installs all routes
as specific end-points that cannot be redefined at run time.
Consequently, to redefine the end-point, we have to access a
python shell to get the server’s process, patch Flask to allow
run-time end-point redefinition, then patch the end-point.

Ameta-behavior to ignore sub-expressions. After gain-
ing access to the running server process5, we patch the
add_url_rule method responsible to install end-points. The
Flask code preventing end-point redefinition is the last if
check in Listing 6. It raises an exception if the new end-point
is different from the previous one (line 6).

1 @setupmethod

2 def add_url_rule(self, ...) -> None:

3 ...

4 if view_func is not None:

5 old_func = self.view_functions.get(endpoint)

6 if old_func is not None and old_func = view_func:

7 raise AssertionError(...)

8 self.view_functions[endpoint] = view_func

Listing 6. Flaskmechanism to prevent endpoint redefinition.

We use Reflectivipy to ignore this last condition, allowing
us to change an existing endpoint. Listing 7 shows how a
“pass” meta-behavior is defined and how it is installed to
ignore the end-point redefinition check. At line 1 − 3, we
define the “pass” meta-behavior, which does nothing. It will
be installed on each AST node that we want to ignore at run
time. At line 4 − 5, we access to the inner if node defined
5We use pyrasite-shell https://pyrasite.readthedocs.io/en/latest/

https://pyrasite.readthedocs.io/en/latest/


Tool demo: fine-grained run-time reflection in Python with Reflectivipy Conference’17, July 2017, Washington, DC, USA

line 6 − 7 in Listing 6. At line 6, we configure a metalink
designed to execute our “pass” meta-behavior instead of
executing the node it is installed on. At line 7 we install our
metalink on the if check node we want to ignore.

1 class Mb(object):

2 def pass(self):

3 ...

4 ast = reflective_ast_for_method(Flask, 'add_url_rule')

5 node = ast.body[0].body[-1].body[1]

6 passLk = MetaLink(Mb(), selector='pass', control='instead')

7 link(passLk, node)

Listing 7. Patch: ignoring the Flask end-point redefinition.

Fine-grained hot-patching. Now that we patched the
framework, we canmodify end-points. In Listing 8, we define
a new meta-behavior that returns the "Goodbye World!"
string (lines 1− 3). We select the original endpoint AST node
(lines 5 − 6) then we configure and install a metalink on that
node (line 7 − 8). Line 9, we uninstall the ignore link used to
patch the framework to restore the original Flask behavior.

1 class Mb(object):

2 def bye(self):

3 return 'Goodbye World'

4
5 ast = reflective_ast_for_method(RouteContainer, 'hello')

6 node = ast.body[0].body[0].value

7 metalink = MetaLink(Mb(), selector='bye', control='instead')

8 link(metalink, node)

9 passLk.uninstall()

Listing 8.Altering a sub-expression of the original endpoint.

Our end-point now replaces the original one: each access
to the default route will show "Goodbye World!" instead of
the original text.

5 Discussion
We discuss in this section some limitations of Reflectivipy.

AST node selection. Selecting AST nodes of a method is
tedious because it has to be done by manually navigating
ASTs. Slight changes in the code can lead to obsolete navi-
gation paths. An interesting solution to explore would be a
pointcut language such as AOP pointcuts [5].

On-stack method modification. Reflectivipy cannot
modify methods whose execution already started. It requires
in-depth execution stack and frame manipulation to inject
a new “code object” into the current frame. In Python, this
is impossible from within the language itself. It also implies
a manipulation of the program counter, which is forbidden
in a normal execution. Even if Python proposes a strong
intercession mechanism, to alter frame execution at run time
we would need to modify the virtual machine.

Asynchronous code instrumentation. Python owns a
special syntax to define call/wait asynchronous code. Reflec-
tivipy does not yet support the instrumentation of asynchro-
nous calls. It requires work to ensure that AST transforma-
tions do not disturb the asynchronous code execution.

6 Related work
Object-oriented languages usually provide some reflective
features. These models of reflection are not operating on an
operational level, nor do they allow cross-cutting. This limits
their use for the kind of use-cases we show in this paper.
Reflex [14] pioneered Partial Behavioral Reflection. Re-

flex’s metalinks are put on collections of operations over
the java bytecode. Similarly, Reflectivity combines an AST-
based reflective model of method structure with the idea of
Metalinks. Reflectivipy realizes this model in Python.
AOP [5] provides language-level abstractions to model

cross-cutting concerns. Pointcuts denote points in the ex-
ecution of a program that trigger code defined in Aspects.
The Metalink model can be seen as a reflective model that is
powerful enough to implement an AOP language. A pointcut
language could be compiled to metalinks, while the aspect
would be the cross-cutting meta-object [4, 13].

Other tools can be used to build features that could be
assimilated as run-time reflection. Bytecode instrumenta-
tion [6, 8] rewrite bytecode to provide more or less fine-
grained instrumentation through which we can achieve in-
trospection and intercession. DynamoRIO [2] instruments
binaries, and acts as a run-time control layer between the
program and the underlying operating system. It proposes
a low-level instruction generator for dynamic run-time ma-
nipulation of the binary. Because of that, it can instrument
external compiled libraries, while Reflectivipy requires to
access a user-readable AST to annotate it and to rewrite it.
Such AST manipulation is user-friendly for developers as it
is closer to the source code. But it is tedious to implement
and we need more tools to expose ASTs and work with them.

7 Conclusion
We presented Reflectivipy, a Python implementation of sub-
method partial behavioral reflection. We used it to imple-
ment a breakpoint that scopes to specific objects with a
sub-expression granularity, and to hot-patch a web frame-
work to alter its behavior at run time. As shown with these
two examples, Reflectivipy offers strong support for fine-
grained instrumentation at run-time. As future work, we
plan to build better AST support, to enable on-stack method
modifications and instrumentation of asynchronous code.

References
[1] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,

Damien Cassou, and Marcus Denker. 2009. Pharo by Example. Square
Bracket Associates, Kehrsatz, Switzerland. 333 pages. http://books.
pharo.org

http://books.pharo.org
http://books.pharo.org


Conference’17, July 2017, Washington, DC, USA Vincent Aranega, Steven Costiou, and Marcus Denker

Figure 2. Erroneous behavior observation

Figure 3. Labelling the AST for an existing upper method.

Figure 4. Execution broke only for one instance.

Figure 5. Inspecting the state of program.

[2] Bernd Bruegge and Allen H. Dutoit. 2004. Object-Oriented Software
Engineering Using UML, Patters, and Java Second Edition. Prentice-Hall.

[3] Steven Costiou, Vincent Aranega, and Marcus Denker. 2020. Sub-
method, partial behavioral reflection with Reflectivity: Looking back

on 10 years of use. The Art, Science, and Engineering of Programming
4, 3 (Feb. 2020). https://doi.org/10.22152/programming-journal.
org/2020/4/5

[4] Johan Fabry and Daniel Galdames. 2012. PHANtom: a modern aspect
language for Pharo Smalltalk. Software: Practice and Experience (2012),
n/a–n/a. https://doi.org/10.1002/spe.2117

[5] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier,
Cristina Videira Lopes, Chris Maeda, and Anurag Mendhekar. 1997.
Aspect-oriented programming. Technical Report. Xerox Palo Alto Re-
serach Center.

[6] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter
Binder, and Zhengwei Qi. 2012. DiSL: A Domain-specific Language
for Bytecode Instrumentation. In Proceedings of the 11th Annual Inter-
national Conference on Aspect-oriented Software Development (AOSD
’12). ACM, New York, NY, USA, 239–250. https://doi.org/10.1145/
2162049.2162077

[7] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2018. Out-
Of-Place debugging: a debugging architecture to reduce debugging
interference. The Art, Science, and Engineering of Programming 3, 2
(Nov. 2018). https://doi.org/10.22152/programming-journal.org/
2019/3/3

[8] Philippe Moret, Walter Binder, and Éric Tanter. 2011. Polymorphic
bytecode instrumentation. In Proceedings of the tenth international
conference on Aspect-oriented software development (AOSD ’11). ACM,
New York, NY, USA, 129–140. https://doi.org/10.1145/1960275.
1960292

[9] Luís Pina, Luís Veiga, and Mickael Hicks. 2014. Rubah: DSU for Java
on a stock JVM. In Proceedings of OOPSLA.

[10] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and
Tobias Pape. 2018. Exploratory and live, programming and cod-
ing: a literature study comparing perspectives on liveness. The
Art, Science, and Engineering of Programming 3, 1 (2018). https:
//doi.org/10.22152/programming-journal.org/2019/3/1

[11] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. 2012. Object-
Centric Debugging. In Proceeding of the 34rd international conference
on Software engineering (ICSE ’12). https://doi.org/10.1109/ICSE.
2012.6227167

[12] Éric Tanter, Noury Bouraqadi, and Jacques Noyé. 2001. Reflex — To-
wards an open reflective extension of Java. In Proceedings of the Third
International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns (LNCS), Vol. 2192. Springer-Verlag, 25–43.

[13] Éric Tanter and Jacques Noyé. 2005. A Versatile Kernel for Multi-
Language AOP. In Proceedings of the 4th ACM SIGPLAN/SIGSOFT Con-
ference on Generative Programming and Component Engineering (GPCE
2005) (LNCS), Vol. 3676. Tallin, Estonia.

[14] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. 2003.
Partial Behavioral Reflection: Spatial and Temporal Selection of Reifi-
cation. In Proceedings of OOPSLA ’03, ACM SIGPLAN Notices. 27–46.
https://doi.org/10.1145/949305.949309

[15] Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, and
Stéphane Ducasse. 2016. Instance Migration in Dynamic Software
Update. In Meta’16. Amsterdam, Netherlands. https://hal.inria.fr/
hal-01611600

https://doi.org/10.22152/programming-journal.org/2020/4/5
https://doi.org/10.22152/programming-journal.org/2020/4/5
https://doi.org/10.1002/spe.2117
https://doi.org/10.1145/2162049.2162077
https://doi.org/10.1145/2162049.2162077
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.1145/1960275.1960292
https://doi.org/10.1145/1960275.1960292
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1109/ICSE.2012.6227167
https://doi.org/10.1109/ICSE.2012.6227167
https://doi.org/10.1145/949305.949309
https://hal.inria.fr/hal-01611600
https://hal.inria.fr/hal-01611600

	Abstract
	1 Introduction
	2 Sub-method, partial behavioral reflection
	3 Reflectivipy in a Nutshell
	3.1 Reflectivipy API
	3.2 Implementation

	4 Reflectivipy in practice
	4.1 Object-centric Debugging for Python
	4.2 Hot-patching a REST server using Reflectivipy

	5 Discussion
	6 Related work
	7 Conclusion
	References

