
EthereumQuery Language

Santiago Bragagnolo
Inria Lille - Nord Europe

Villeneuve D’ascq, France

santiago.bragagnolo@inria.fr

Henrique Rocha
Inria Lille - Nord Europe

Villeneuve D’ascq, France

henrique.rocha@gmail.com

Marcus Denker
Inria Lille - Nord Europe

Villeneuve D’ascq, France

marcus.denker@inria.fr

Stéphane Ducasse
Inria Lille - Nord Europe

Villeneuve D’ascq, France

stephane.ducasse@inria.fr

ABSTRACT

Blockchains store a massive amount of heterogeneous data which

will only grow in time. When searching for data on the Ethereum

platform, one is required to either access the records (blocks) di-

rectly by using a unique identifier, or sequentially search several

records to find the desired information. Therefore, we propose

the Ethereum Query Language (EQL), a query language that al-

lows users to retrieve information from the blockchain by writing

SQL-like queries. The queries provide a rich syntax to specify data

elements to search information scattered through several records.

We claim that EQL makes it easier to search, acquire, format, and

present information from the blockchain.

CCS CONCEPTS

• Information systems → Query languages; Information re-

trieval query processing; Database query processing; Computing

platforms; Digital cash;

KEYWORDS

Ethereum, Blockchain, Query Language, SQL

ACM Reference Format:

Santiago Bragagnolo, Henrique Rocha,MarcusDenker, and StéphaneDucasse.

2018. EthereumQuery Language. In Proceedings of the 1st InternationalWork-

shop on Emerging Trends in Software Engineering for Blockchain (WETSEB’18).

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3194113.3194123

1 INTRODUCTION

Blockchain was initially used as a distributed ledger allowing mon-

etary interactions without the need of central trusted authority [2,

8, 10–12]. We prefer a more formal definition that blockchain is a

globally shared transactional database managed by a peer-to-peer

network [7]. Each peer in that network stores a complete copy

of the blockchain database. The records are database transactions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WETSEB’18, May 27, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5726-5/18/05. . . $15.00
https://doi.org/10.1145/3194113.3194114

that append new information to the current state of the blockchain.

Transactions are packed into blocks and the blocks are linked in a

sequence forming a chain. Thus, the name blockchain.

Ethereum [5] is a popular blockchain platform that is capable of

executing Turing-complete programs, called Smart Contracts [10].

Ethereum also has its own cryptocurrency for monetary interac-

tions, called Ether [5].

Ethereum and other blockchains store a massive amount of het-

erogeneous data. Ethereum is estimated to have approximately

300GB of data [1]. Retrieving information from this massive data

is not an easy task. Moreover, the Ethereum platform only allows

direct access to its first-class data elements, which includes blocks,

transactions, accounts, and contracts [5]. Therefore, if we search

for a particular information inside a data element, we would need

a unique identifier (i.e., either the number or its hash) to access

the block containing such information. Another alternative would

be to direct access one block and sequentially access its parents

to search for a data. Moreover, the information returned by the

Ethereum platform when we access its blocks is encoded into a

JSON-like structure that we need to interpret to acquire a specific

item. Therefore, the Ethereum platform does not provide a semantic

way to search for information and neither an easy form to present

such information.

For example, let’s consider a blockchain application that man-

ages a custom cryptocurrency controlled by a single person (i.e.,

an owner).1 The owner needs to look for suspicious and possible

malicious behavior in the history of one specific account. Currently,

the owner would have two options to gather that account’s data:

(i) direct access each block with the specific information, which

would require for the owner to know beforehand the blocks’ hashes

or numbers; or (ii) access the most recent block and sequentially

search every parent block for any information related to the ac-

count. After the owner acquires the information he still needs to

extract it from the stored representation and reformat it for a better

visualization.

In a classical database, when we need to search for a particular

information, we usually write a query to fetch, present, filter, and

format such information. Database query languages like SQL pro-

vide a rich syntax to describe the data we want to acquire from the

database. Since blockchain can be considered a database, it would

be better if we could use a similar way to fetch information inside

1 There is an example in the Solidity documentation called Subcurrency [7]. We present
a modified version of this same example in Section 2.2.

1

2018 ACM/IEEE 1st International Workshop on Emerging Trends in Software Engineering for Blockchain

WETSEB’18, May 27, 2018, Gothenburg, Sweden Bragagnolo et al.

the blocks. In this paper, we propose the Ethereum Query Language

(EQL), a query language that enables its users to acquire informa-

tion in the blockchain by writing SQL-like queries. Our goal is to

provide an easier way to fetch, format, and present information

extracted from the blockchain database.

The remainder of this paper is organized as follows. Section 2

present basic concepts on StructuredQuery Language and Ethereum

smart contracts. Section 3 describes the problems and challenges

to search and retrieve information from the blockchain. Section 4

present EQL along with its syntax, examples, internal structure

(indexes), and limitations. In Section 5, we show a preliminary eval-

uation describing the performance of EQL queries. In Section 6, we

present related work in blockchain. Finally, Section 7 concludes the

paper and outlines future work ideas.

2 BACKGROUND

In this section, we present basic concepts on Structured Query

Language (Section 2.1), and Ethereum Smart Contracts (Section 2.2).

2.1 Structured Query Language

Structure Query Language (SQL) is considered the standard rela-

tional database language [4, 14]. Even though SQL is well estab-

lished as a query language, it can also perform other operations

such as manipulating data or specifying integrity constraints. The

commercial success of relational databases is greatly due to SQL

being a well-adopted standard [4].

In SQL, the “SELECT” statement is used to query data (i.e., re-

trieve information) [14]. Basically, a “SELECT” query consists of the

clauses: select, from, where, group by, and order by. The select clause

specifies what to show from the query results; the from clauses

defines which tables to gather the data; the where clause defines a

condition the information must satisfy to be returned as a result;

the group by clause groups the gathered data based on a condition;

and finally, the order by clause specifies how the query orders its

results.

We based our proposed query language on SQL, due to its pop-

ularity and broad user base. More specifically, our queries use an

adapted form of the “SELECT” statement.

2.2 Ethereum Smart Contracts

Smart contracts are programs that are executed in the blockchain

platform [8, 10]. A smart contract is like a class; it contains attributes

and functions, and it can use inheritance on other contracts [7]. The

correct execution of smart contracts, as well as their resulting states,

is ensured by a consensus protocol [10]. Solidity [7] is the primary

language to specify smart contracts in the Ethereum blockchain.

Since the Ethereum platform is Turing-complete, contracts can

define any rules by using the Solidity language.

Solidity is a high-level language based on JavaScript, C++, and

Phyton [7]. The contracts written in Solidity are compiled into a

specific bytecode to run on the Ethereum Virtual Machine (EVM).

A compiled contract can be deployed into the Ethereum blockchain

by executing a special transaction that allocates an address to it [2].

This address is a 160-bit unique identifier that references the con-

tract. Once deployed, a contract can be executed remotely by client

applications.

Listing 1 shows a Solidity contract example (adapted from the

subcurrency example on the Solidity documentation [7]) that man-

ages a simple cryptocurrency controlled by a single person. The

contract stores the balances of its accounts using a “mapping” (line

7) that works like a hash table by mapping blockchain addresses

to unsigned integers. The constructor (lines 13-15) stores the ad-

dress of who deployed the contract (i.e., the owner of this contract

instance). Only the owner can call the function “mint” (lines 18-21),

which creates new coins for a specific account. The function “send”

(lines 24-30) allows the caller of this function to transfer his coins

to another account, provided that the caller has sufficient funds for

such operation.

Listing 1: Solidity SimpleCryptocurrencyContract, Adapted

Example

1 pragma solidity ^0.4.20;

2

3 contract CustomCoin {

4 address private owner;

5

6 /* The keyword "public" makes it readable

from outside */

7 mapping (address => uint) public balances;

8

9 /* Events allow light clients to react on

changes efficiently */

10 event Sent(address from, address to, uint

amount);

11

12 /* Constructor: only executed when the

contract is deployed */

13 function CustomCoin() public {

14 owner = msg.sender;

15 }

16

17 /* Creates new coins */

18 function mint(address receiver, uint

amount) public {

19 if (msg.sender != owner) return;
20 balances[receiver] += amount;

21 }

22

23 /* Allows the caller to send coins to

another user/account */

24 function send(address receiver, uint

amount) public {

25 if (balances[msg.sender] < amount)

26 revert(); // abort transaction

27 balances[msg.sender] -= amount;

28 balances[receiver] += amount;

29 Sent(msg.sender, receiver, amount);

30 }

31

32 } //end of contract

2

EthereumQuery Language WETSEB’18, May 27, 2018, Gothenburg, Sweden

3 PROBLEM

In this section, we describe in more detail the problems and chal-

lenges when trying to acquire data from a blockchain. Although our

research is focused on Ethereum, such problems are also present

on other blockchain platforms as well.

3.1 Massive Data

Blockchain databases already possess a massive amount of data.

For example, Ethereum is estimated to have approximately 300GB

of data [1]. Moreover, Ethereum processed, on average, 876K trans-

actions per day in December of 2017 (Figure 1).

Since the data in the blockchain cannot be deleted, the number of

recorded transactions will only grow in time. In this context, older

information could get overwhelmed by new transactions. Indeed,

the common expression “looking for a needle in a haystack” could

be updated to “looking for a hash in a blockchain”.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Average Ethereum Transactions per Day (2017)

of

 T
ra

ns
ac

tio
n

pe
r

da
y

45K 50K
78K 84K

136K

241K 252K

339K
355K

406K

509K

876K

0
10

0K
20

0K
30

0K
40

0K
50

0K
60

0K
70

0K
80

0K
90

0K

Figure 1: Average number of Ethereum transactions per day

in 2017. Source: etherscan.io

3.2 Heterogeneous Data

Blockchain not only stores a great amount of data but also man-

ages a mixture of first-class elements such as transactions, blocks,

accounts, and smart contracts. Data elements are represented as

transactions, which are bundled into a storage element (blocks).

Smart contracts are programming elements that manage data and

function, and accounts are elements to represent users.

All of the first-class elements (blocks, transactions, etc.) are differ-

ent but interrelated by hashes. Even though Ethereum allows access

to any of its first-class elements, the heterogeneity of the elements

(each one with different meaning and high-level representation)

complicates the acquisition of information.

3.3 Direct Access

In general, blockchains only allow direct access to its elements by

using a unique identifier. This identifier is a hash number that is

generated for every first-class element stored in the blockchain [3].

The Ethereum platform, in particular, can also use a unique

number (related to the order of the element) to access blocks and

transactions [6]. In this scenario, a user only needs to provide a

hash to the API to invoke the specific fetch method to acquire

the desired element (e.g., block, transaction, contract). From the

API point-of-view, this is a good solution because it is fast, simple,

and possesses very little overhead. However, this direct access by

hash can lead to the following issues when we consider the user’s

point-of-view:

• Hash Storage. Since the user needs the hash to fetch the

information, he/she is also required to store the hash, some-

way, if he/she wants to acquire the same information later.

Otherwise, the user will lose the key to access the desired

information in the future. This problem increases when the

user needs to “remember” multiple hashes for later use. In

such case, a secondary private database is required to store

all hashes with related meta-data to retrieve the information

from the blockchain in the future.

• Sequential Access. If the user loses the hash, he/she can

still find the relevant data by performing a sequential access

in the blockchain. In Ethereum, it is possible to start at the

most recent block and sequentially access the blocks parents.

Since Ethereum blocks can also be fetched by their number

(and not only the hash), a user could also access a sequence

of blocks by just incrementing or decrementing the block

number. Sequential access is also useful when a user needs

to search for information scattered around multiple blocks.

Searching for information in a sequential way is not efficient.

Moreover, it is noteworthy that each block access is a remote

procedure call (RPC), which may hinder the performance of

any sequential search.

3.4 Data Opaqueness

In order to give users flexibility, Ethereum stores arbitrary infor-

mation (e.g., contracts, transactions) with a generic representation.

Therefore, the stored data is opaque, since there is no meta-data

describing the information and neither a simple way to know what

was recorded.

This opaqueness is useful and even necessary from the Ethereum

standpoint because it reduces the data representation size and al-

lows the storage of arbitrary structures and behaviors. On the other

hand, the opaqueness overcomplicates searching for information,

since a user needs to access generic representations without any

knowledge of its content.

3

WETSEB’18, May 27, 2018, Gothenburg, Sweden Bragagnolo et al.

4 ETHEREUM QUERY LANGUAGE

In this section, we describe the Ethereum Query Language (EQL)

version 0.8, a query language designed to acquire information from

the blockchain.2 EQL is publicly available on GitHub.3

We highlight the following benefits of using EQL to fetch infor-

mation from blockchain: (i) describe structural and semantic filters

to query for information; (ii) reformat and transform the acquired

data; (iii) order the query results; and (iv) limit the amount of results

returned.

4.1 Syntax

EQL syntax is based on the SQL language. The idea is to allow users

to write queries as close to SQL as possible to facilitate the adoption

of EQL since SQL is a very popular language [4, 14].

Listing 2 shows the main elements of the EQL syntax. The syntax

is described using EBNF (Extended Backus-Naur Form), we did not

format the terminals identifier and number in double-quotes to

highlight that they are not literals. We omitted the Expression rule

to not clutter the specification, but it follows a similar structure of

SQL expressions.

Listing 2: EQL grammar in EBNF format

1 <SelectStatement> ::= <SelectClause>

2 <FromClause> [<WhereClause>]

3 [<OrderByClause>] [<LimitClause>]

4 <SelectClause> ::= "select" <Expression>

5 {"," <Expression> }

6 <FromClause> ::= "from" <SourceBind>

7 {"," <SourceBind> }

8 <WhereClause> ::= "where" <Expression>

9 <OrderByClause> ::= "order" "by" <Expression>

10 ["asc" | "desc"]

11 <LimitClause> ::= "limit" number

12 <SourceBind> ::= identifier "as" identifier

13 <Expression> ::= ...

As we can see from Listing 2, the syntax for EQL queries is very

similar to the “Select” statement from the SQL language. The EQL

“Select” statement consists of the following clauses: select, from,

where, order by, and limit. Only the select and from clauses are

required, the others are optional clauses. We also like to highlight

that EQL similarly to SQL is also case-insensitive. Unlike SQL, the

EQL “Select” statement does not have a group by clause.4

4.2 Examples

We present a few examples of queries written in EQL. In the cur-

rent version of EQL, we are able to query blocks and transactions.

Querying for information inside contracts (i.e., contract attributes

or functions) is not yet supported by our implementation.

Listing 3 shows an example that query over blocks. In this query,

the from clause (line 2) gathers data from all blocks (ethereum.blocks)

2 Currently, EQL works only on the Ethereum blockchain platform, even though, we
are working to extend its reach to other platforms as well. Therefore, when we refer
to “blockchain” in this section, we are in fact referring specifically to the Ethereum
blockchain platform.
3 https://github.com/sbragagnolo/UQLL, verified 2018-03-08.
4 EQL is a project under development. Although we have plans to support a group by
clause in the future, the current version does not allow the usage of such clause.

using the alias “block” to reference them. The select clause (line 1)

specifies the query results will show the block’s parent number, its

own hash, timestamp, number, and amount of transactions inside

the block. The where clause (line 3) filters the blocks to fetch only

those with a timestamp between 2016-01-01 and today, the block

must also have more than ten transactions packed into it. The order

by clause (line 4) arrange the results in descending order by how

many transactions are inside each block. Finally, we use the limit

clause (line 5) restricts our results to show only the first 100 blocks.

Listing 3: EQL Block Query Example

1 SELECT block.parent.number, block.hash,

block.timestamp, block.number,

block.amountOfTransactions

2 FROM ethereum.blocks AS block

3 WHERE block.timestamp BETWEEN date('2016−01−01')

AND now() AND block.transactions.size >10

4 ORDER BY block.transactions.size

5 LIMIT 100;

Figure 2 shows the top-20 results formatted for a better visualiza-

tion from the query (Listing 3). Figure 3 shows a raw representation

of the same top-20 results.

Figure 2: EQLBlockQuery Example Results (Formatted Rep-

resentation)

Listing 4 shows a query example that searches for transactions.

The from clause (line 2) determinates that the data will come from

every Ethereum transaction (ethereum.transactions) using the alias

“transaction”. The select clause (line 1) will show as result the trans-

action timestamp, the hash from the account that initiated the

transaction, the hash to the account that received this transaction,

and the amount moved by this transaction multiplied by 0.1. We

used the multiplication to show that EQL can transform the re-

sulting data on its select clause by using simple expressions. The

where clause (line 3) stipulates that only the transactions with a

timestamp greater than 2018-01-01; the clause also restricts the

4

EthereumQuery Language WETSEB’18, May 27, 2018, Gothenburg, Sweden

Figure 3: EQL Block Query Example Results (Raw Representation)

results to the accounts with a balance greater than 100 ether that

initiated the transaction. The order by clause (line 4) arrange the

results in descending order by the balance on the account receiving

the transaction. Finally, the limit clause (line 5) limits the results to

fetch only the first ten transactions.

Listing 4: EQL Transaction Query Example

1 SELECT transaction.timestamp,

transaction.from.hash,

transaction.to.hash,

transaction.amount*0.1

2 FROM ethereum.transactions AS transaction

3 WHERE transaction.timestamp > date('2018−01−01')

AND transaction.from.balance()>100 ether

4 ORDER BY transaction.to.balance() DESC
5 LIMIT 10;

Figure 4 shows the results formatted for a better visualization of

the query described in Listing 4.

Figure 4: EQL Transaction Query Example Results

4.3 Collections and Objects

In EQL, a collection is a semantic representation of queried data.

More specifically, collections are used in the from clause as they rep-

resent the data we are searching. The EQL language have four pre-

defined collections: ethereum.blocks, ethereum.transactions, ethere-

um.accounts, and ethereum.contracts. Each one of those collections

represents all first-class elements from a particular type (blocks,

transactions, accounts, or contracts). It is possible to create custom

collections from a subset of another one. EQL also supports “views”

similar to SQL.

When we retrieve information from a collection of blocks, the

result will be presented as block objects. As we shown in Listing 3,

Ethereum blocks have attributes related to their storage structure.

Blocks queried by EQL have the following attributes:

• number: integer, the block’s number.

• hash: hash (binary 32 bytes), the block’s hash.

• parentHash: hash, the parent’s block hash.

• parent: block, the parent’s block (EQL automatically fetches

the parent information using the hash).

• nonce: integer, the proof-of-work nonce value.

• timestamp: timestamp, the unix timestamp when the block

was created.

• size: integer, the size of the block in bytes.

• miner: address (binary 20 bytes), the account who mined

this block.

• difficulty: integer, the proof-of-work difficulty for this block.

• totalDifficulty: integer, the total difficulty of the chain until

this block.

• gasLimit: integer, the maximum gas allowed in the block.

• gasUsed: integer, the total gas used by all transactions in

this block.

• extraData: binary variable size, a general field to contain

extra data for the block.

• transactionsRoot: hash, the first transaction on this block.

• transactionsHashes: set of hashes, the hashes from the

transactions on this block.

5

WETSEB’18, May 27, 2018, Gothenburg, Sweden Bragagnolo et al.

• transactions: set of transactions, the transactions in this

block.

• amountOfTransactions: integer, the number of transac-

tions in this block.

• uncleHashes: set of hashes, the uncles5 hashes.

• uncles: set of blocks, the uncles’ blocks.

In the above attributes, the ones that are a set (e.g., transactions)

can be called as a function passing the index as parameter. In this

case, the function returns only the element at the specified index (or

null if the index is out of bounds). For example, block.transactions(3)

would return the third transaction in the current block.

Transaction objects have a different representation. It is note-

worthy to mention that while a block contains many transactions, a

transaction object is contained inside a single block. In EQL, trans-

action objects have the following attributes:

• hash: hash, the transaction’s hash.

• nonce: integer, the nonce of the sender account (i.e., for

accounts the nonce counts the number of transactions it

created; it is a form to avoid double spending).

• blockHash: hash, the block’s hash.

• blockNumber: integer, the block’s number.

• block: block, the block that contains this transaction.

• transactionIndex: integer, the transaction’s index position

in the block.

• fromHash: address, the address from the account that initi-

ated this transaction (i.e., the sender).

• from: account, the sender’s account.

• toHash: address, the address of the receiver of this transac-

tion.

• to: account, the account of the receiver of this transaction.

• value: integer, the amount transfered in Wei.

• gasPrice: integer, the gas price set by the sender in Wei.

• gas: integer, gas consumed by this transaction.

• input: binary variable size, the data send along with the

transaction.

• timestamp: timestamp, the unix timestamp when the trans-

action was created.

Accounts are a simple object that have the following attributes

in EQL:

• address: address, the account’s address.

• name: string, the account’s name.

• balance: integer, the amount of cryptocurrency (in Wei) on

this account.

EQL have limitations when dealing with contracts (described in

more detail at Section 4.5). A contract object is a special type of

an account. In the current version, contracts have the following

attributes:

• address: address, the contract’s address.

• name: string, the contract’s name.

• balance: integer, the amount of cryptocurrency (in Wei) on

this contract.

• bytecode: binary variable size, the contract code.

5 In Ethereum, uncle blocks are valid blocks that were mined but rejected. The uncles
are orphaned blocks that contribute to the security of the main chain Uncle blocks do
not contain transactions.

4.4 Indexes

Internally, our implementation of EQL relies on indexes to increase

its performance when querying data. Since each access to the

blockchain to fetch data is a remote call, any form of optimiza-

tion can improve the time required to acquire and present data.

An index is a summarization of data stored into a structure that

improves the performance of retrieval operations. The basic idea is

to allow a more efficient search into the database. In our particular

case, we index blockchain data (e.g., blocks, transactions) with its

related hash to speed up fetching data.

For EQL, we implemented a Binary Search Tree (BST) to serve

as the index structure. The BST employs a two-dimensional array

where the first dimension of each entry is used for storing the

property value, and the second dimension is used for storing a set

of hashes to the elements that correspond to this specific value. We

chose this implementation because of its simplicity for selecting an

interval of indexes in any comparison operation, such as “greater

than”, “lesser than”. We acknowledge that BST has a high storage

requirement. However, we wanted a simple and fast solution to

our first implementation of EQL. Moreover, EQL builds its indexes

automatically, without the need for user interaction.

4.5 Limitation

The current version of the EQL implementation (version 0.8) has

some limitations.

First, we are not able to search inside contract attributes when

querying. We are still able to query blocks and transactions that

were created to record a smart contract attribute change. However,

we would need to use the information on blocks and transactions to

find information related to contracts. We are working to circumvent

this limitation and offer contract querying on the next release of

EQL.

A second limitation is also related to smart contracts. We are

unable to use smart contract functions on EQL expressions. Since,

smart contracts store not only data but also functional behavior,

it might be necessary to execute a contract function to properly

query for contract information. We acknowledge that allowing

users to call any contract function could lead to performance bot-

tlenecks, security issues, and re-triggering the contract. Therefore,

we plan to allow “read-only” type of smart contract functions in

EQL expressions.

Another limitation is that we placed a maximum upper bound

on the number of results returned by EQL. Even though, the limit

clause is optional, our implementation will always return at max-

imum 1000 results because of memory constraints. Although we

have no plans to allow unlimited results being returned, we are

working to use an “offset” definition on the query so that a user

can retrieve bigger results in installments.

The lack of group by clause in EQL is also another limitation.

This hinders the expressiveness of the EQL language as we cannot

perform aggregation queries. We are working to add group by and

aggregate functions in a future version of EQL.

6

EthereumQuery Language WETSEB’18, May 27, 2018, Gothenburg, Sweden

5 PRELIMINARY EVALUATION

As a preliminary form of evaluation, we tested the performance of

EQL on retrieving information. We compared EQL against using a

driver6 to direct access the information inside the blockchain. We

are using the direct access as a baseline for comparison since it

is not possible for EQL (or any approach) to perform better than

direct access.

For the evaluation, we employed direct access to fetch 100 ran-

domly selected blocks. Then, we used the EQL query shown in

Listing 3 (Section 4.2) to fetch 100 blocks. First, we executed both

retrieval operations with an empty cache. Second, we repeated

the same operations to verify how both would perform when the

searched information is already in the cache. It is noteworthy that

the driver we used for direct access maintains a cache to improve

its performance, and it is not a standard feature of direct accessing

Ethereum.

Table 1 shows the performance comparison between both ap-

proaches without and with information on the cache. Table 1 mea-

sures the time (average, standard deviation, mode, maximum, and

minimum) to fetch one block in milliseconds. We were not able to

calculate the standard deviation for the cached execution because

the numbers were too small.

Table 1: Performance Tests to Fetch Blocks measured in Mil-

liseconds

Avg St.Dev. Mode Max Min

Direct without cache 5.88 12.36 1.60 127.2 0.30

EQL without cache 159.69 13.65 107.37 225.64 88.05

Direct with cache 0.04 – 0.03 0.05 0.03

EQL with cache 0.04 – 0.03 0.05 0.03

As we can see from Table 1, when both approaches do not use

cached information, direct access is much faster than EQL. This

is expected because direct access is fetching blocks directly using

their hashes, while EQL is searching for information inside the

blocks (i.e., the timestamp and number of transactions as defined

in the query in Listing 3) to see which ones will return as the query

result. When the information being searched is already cached then

both approaches reach similar results.

6 RELATEDWORK

Porru et al. [13] acknowledge the need to create and adapt tools and

techniques for blockchain-oriented software (BOS). The authors

define the term BOS as a software that interacts with blockchain.

Basically, they discuss the software engineering issues when dealing

with BOS. The authors first present challenges on the state-of-art

BOS; second they analyse 1184 GitHub projects using blockchain;

and finally, they propose ideas for research on BOS. Even though

the authors present very interesting research possibilities, they did

not foresee research in query languages for blockchain.

Bartoletti et al. [1] propose a framework for blockchain analytics

coded as a Scala library. Their framework works on both Ethereum

and BitCoin platform and it employs a general-purpose abstraction

6 The driver used for direct accessing the blockchain is also publicly available on
GitHub at https://github.com/sbragagnolo/Fog (verified 2018-03-08).

layer to promote reuse. One great feature of the authors’ frame-

work is the ability to integrate data from other sources besides

blockchain, such as a NoSQL database. The authors contrast their

framework features against five other tools, but they do not conduct

a performance comparison. This work is interesting because the

authors combine blockchain data with a secondary database. We

have plans to incorporate in EQL the capabilities to join blockchain

data and a secondary database on the query.

Kalodner et al. [9] implement an open-source blockchain anal-

ysis platform, called BlockSci. Their platform comes with many

tools and features to better help with the analysis. For instance, the

authors’ claim it is 15 to 600 times faster than other tools. They

support the following blockchains: BitCoin, LiteCoin, Namecoin,

and Zcash. Similarly to EQL, BlockSci also uses indexes in its im-

plementation. Unlike EQL, BlockSci indexes are stored in SQLite

database. Moreover, the authors claimed that many analyses do not

require indexes at all. This contrasts with EQL, which indexes are

essential to speed up the retrieval performance. Although BlockSci

provides a better visualization and navigation on blockchain data,

it does not provides an easy way to search or filter information.

There are many researches towards security on blockchains

and smart contracts. Luu et al. [10] analyses the security flaws in

Ethereum smart contracts. The authors identified security problems

and possible ways of attack by exploiting smart contracts. Then, the

authors formalize solutions for the identified security issues. They

also implement a tool that checks for problematic code on a smart

contract. Their tool processed over 19K Ethereum contracts and

found unsecured coding practices on approximately 8K of them.

Juels et al. [8] investigate what they called, criminal smart con-

tracts (CSC). CSC is a contract that facilitates illicit activities and

rewards those interacting with it. The authors create their own

CSC as a proof of concept. They also propose countermeasures

against CSC which could help the blockchain community prevent

CSC proliferation. Some of the described criminal activities could

be more easily caught by querying blockchain data.

7 CONCLUSION

The amount of data stored in blockchain is massive and that data

is also heterogeneous and opaque. Moreover, the Ethereum plat-

form only allows direct or sequential access to its blocks. In this

context, searching for information inside the blockchain is a chal-

lenging task because we must sequentially access a huge amount of

opaque data. To help in this challenge, we proposed EQL, a query

language that allows users to retrieve information by writing SQL-

like queries. Our implementation of EQL automates the task of

sequentially searching into generic opaque structures, and provides

an easier way to specify the information we want to acquire in a

higher abstraction level. Although the current implementation (ver-

sion 0.8) still shows limitations when dealing with smart contract

information, we are able to fetch records related to contracts but

only in the form of blocks or transactions.

We tested the performance of EQL against direct accessing blocks

for a baseline comparison. As expected, EQL is much slower when

the information is not cached (average of 159 milliseconds to fetch

a block) than direct access (average 5.88 milliseconds to fetch a

block). However, when the information being searched is already

7

WETSEB’18, May 27, 2018, Gothenburg, Sweden Bragagnolo et al.

cached, then EQL reach similar results to direct access (average

of 0.04 milliseconds to fetch a block). Even though using EQL can

take longer than direct access, the goal is to help users who cannot

directly access their information and need to search for it in the

blockchain. Since EQL automates the searching task, it simplifies

information retrieval for Ethereum.

For futurework, our first priority is to tackle the limitations of the

implemented version of EQL, especially to support smart contract

querying. Moreover, we plan to add support to group by clauses

and aggregate functions as well. We are also planning to create

a tool to write queries and show results based on SQL database

tools (e.g., MySQL Workbench). Another future work idea is to

perform a more in-depth performance evaluation, and also a user

feedback evaluation on EQL. Moreover, we plan to allow EQL to

merge blockchain data and data from other sources (e.g., NoSQL

database, relational database) when presenting results.

ACKNOWLEDGMENT

This work was supported by Ministry of Higher Education and

Research, Nord-Pas de Calais Regional Council, CPER Nord-Pas

de Calais/FEDER DATA Advanced data science and technologies

2015-2020. This research was also supported by UTOCAT.

REFERENCES
[1] Massimo Bartoletti, Stefano Lande, Livio Pompianu, and Andrea Bracciali. 2017.

A General Framework for Blockchain Analytics. In 1st Workshop on Scalable and
Resilient Infrastructures for Distributed Ledgers (SERIAL ’17). ACM, New York, NY,
USA, Article 7, 6 pages. https://doi.org/10.1145/3152824.3152831

[2] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. For-
mal Verification of Smart Contracts: Short Paper. In 2016 ACM Workshop on
Programming Languages and Analysis for Security (PLAS ’16). ACM, New York,
NY, USA, 91–96. https://doi.org/10.1145/2993600.2993611

[3] BitCoin.org. 2018. Bitcoin Developer Reference. Bitcoin Core APIs. (2018).
https://bitcoin.org/en/developer-reference#opcodes Bitcoin Project 2009-
2018.

[4] Ramez Elmasri and Shamkant Navathe. 2010. Fundamentals of Database Systems
(6th ed.). Addison-Wesley Publishing Company, USA.

[5] Ethereum Foundation. 2014. Ethereum’s white paper. (2014). https://en.
wikibooks.org/wiki/LaTeX/Bibliography_Management

[6] Ethereum Foundation. 2018. JSON RPC. (2018). https://github.com/ethereum/
wiki/wiki/JSON-RPC

[7] Ethereum Foundation. 2018. Solidity Documentation Release 0.4.20. (2018).
https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf

[8] Ari Juels, Ahmed Kosba, and Elaine Shi. 2016. The Ring of Gyges: Investigating
the Future of Criminal Smart Contracts. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 283–295. https://doi.org/10.1145/2976749.2978362

[9] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan. 2017. BlockSci:
Design and applications of a blockchain analysis platform. ArXiv e-prints (Sept.
2017). arXiv:cs.CR/1709.02489

[10] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. In CCS’2016 (ACM Conference on Computer and
Communications Security).

[11] Satoshi Nakamoto. 2009. BitCoin: A peer-to-peer electronic cash system. (2009).
bitcoin.org

[12] Russell O’Connor. 2017. Simplicity: A New Language for Blockchains. In Pro-
ceedings of the 2017 Workshop on Programming Languages and Analysis for Secu-
rity (PLAS ’17). ACM, New York, NY, USA, 107–120. https://doi.org/10.1145/
3139337.3139340

[13] Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli. 2017.
Blockchain-oriented Software Engineering: Challenges and New Directions.
In Proceedings of the 39th International Conference on Software Engineering
Companion (ICSE-C ’17). IEEE Press, Piscataway, NJ, USA, 169–171. https:
//doi.org/10.1109/ICSE-C.2017.142

[14] Abraham Silberschatz, Henry Korth, and S. Sudarshan. 2011. Database Systems
Concepts (6 ed.). McGraw-Hill, Inc., New York, NY, USA.

8

