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Abstract

Transforming programs to alter their semantics is of wide interest, for purposes as diverse as off-the-shelf component adaptation,
optimization, trace generation, and experimentation with new language features.The current wave of interest in advanced technologies
for better separation of concerns, such as aspect-oriented programming, is a solid testimony of this fact. Strangely enough, almost
all proposals are formulated in the context of Java, in which tool providers encounter severe restrictions due to the rigidity of
the environment. This paper presents BYTESURGEON, a library to transform binary code in Smalltalk. BYTESURGEON takes full
advantage of the flexibility of the Squeak environment to enable bytecode transformation at runtime, thereby allowing dynamic,
on-the-fly modification of applications. BYTESURGEON operates on bytecode in order to cope with situations where the source code
is not available, while providing appropriate high-level abstractions so that users do not need to program at the bytecode level. We
illustrate the use of BYTESURGEON via the implementation of method wrappers and a simple MOP, and report on its efficiency.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many objectives of software engineering can be served by appropriate program transformation techniques. Software
adaptation can be used for Binary Component Adaptation (BCA), a technique proposed by Keller and Hölzle which
relies on coarse-grained alterations of component binaries to make them interoperable [1].Another objective of software
adaptation is that of separation of concerns [2], as first emphasized by work carried out in the reflection community
[3–5], and more recently, aspect-oriented programming (AOP) [6]. In this context, transformation techniques are
used to merge together different pieces of software encapsulating different concerns of the global system. Program
transformation is a valid implementation techniques for reflection and AOP when an open interpreter of the considered
language is not available.
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Fine-grained control of computation, such as message passing control in the context of object-oriented programming,
is the corner stone of many interesting applications [7]. It has been used for a wide range of application analysis
approaches, such as tracing [8–10], automatic construction of interaction diagrams, class affinity graphs, test coverage,
as well as new debugging approaches [11,12]. Message passing control has also been used to introduce new language
features in several languages, for instance multiple inheritance [13], distribution [14–16], instance-based programming
[17], active objects [18], concurrent objects [19], futures [20] and atomic messages [21,22], as well as backtracking
facilities [23].

CLOS is one the few languages that offers a dedicated metaobject protocol (MOP) supporting language semantics
customization [24]. Other languages such as Smalltalk and Java rely on techniques or libraries to either transform code
or take control of the program execution [7,25]. The most basic way to alter programs is of course to modify the source
code and recompile it. This approach is used by several Java systems, such as OpenJava [26] and the Java Syntactic
Extender [27]. However, in many contexts, relying on the availability of source code is limiting since most applications
ship in binary form, and in open distributed systems, source code is usually not known in advance. Furthermore, the
source language from which the actual binary was obtained is not necessarily the mainstream language of the runtime
system. Bytecode manipulation, as done in the Java world by tools such as BCEL [28] and Javassist [29] is a particularly
pertinent alternative. The challenge is to provide appropriate high-level abstractions to bytecode transformation, in order
to shield users from the burden of working at the bytecode level [25].

To the best of our knowledge, there is no single bytecode transformation tool for the Smalltalk/Squeak environment,
in the line of what Javassist represents for the Java world. This is all the more surprising that the Squeak environ-
ment actually represents an ideal environment for bytecode transformation. In contrast with Java where full bytecode
transformation is only possible at load time, and very severely limited at runtime, Squeak enables the full power of
bytecode transformation to be used dynamically. The purpose of BYTESURGEON is precisely to leverage the flexibility
of the Smalltalk language and the Squeak environment to provide a backend to designers of toolkits for component
adaptation, reflective and metaprogramming, and aspect-oriented programming.

The contributions of this paper are:

• a motivation for the need of a dynamic bytecode transformation framework for Smalltalk, working at appropriate
levels of abstraction,

• a framework, called BYTESURGEON, that enables runtime bytecode transformation via a two level API,
• a simple MOP that can be used to compare bytecode transformation frameworks.

The paper is organized as follows: Section 2 explains the need for bytecode manipulation at appropriate levels of
abstraction, by discussing related work. Then we present BYTESURGEON at work in Section 3. Section 4 details some
aspects of the architecture. In Section 5, we validate the interest of our framework via the implementation of two
language features: method wrappers [10], and a simple runtime MOP making use of runtime manipulation for dynamic
(un)installation of hooks; a first set of benchmarks completes the validation of BYTESURGEON. Section 6 discusses
future work and concludes.

2. The need for bytecode manipulation

There are many ways to change the semantics of programs, ranging from code preprocessing to modification of the
language runtime environment. If the language runtime is not an open implementation offering an adequate MOP [24],
then modifying it directly sacrifices portability; since mainstream Smalltalk virtual machines such as Squeak are not
open in this sense, we discard the alternative of intervening at the VM level.

Source code transformation can be done either directly on the text (concrete syntax) or on the abstract syntax tree
(AST) (abstract syntax). Furthermore, in language environments where source code is compiled to an intermediate
bytecode language which is abstract enough, bytecode transformation is an interesting approach; it is actually widely
used in the Java community.

In Section 2.1 we discuss the inconveniences of source code approaches. Still, once bytecode transformation is
agreed upon, the issue of the abstraction level offered to the programmer appears, discussed in Section 2.2. We also
discuss the limitations of bytecode transformation in the context of Java.
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2.1. Disadvantages of source code transformation

Transforming source code at the concrete syntax level is typically avoided because of the lack of structure and
abstraction at the text level. Transformation of ASTs is much more adequate, but still suffers from a number of
limitations.

No access to the source code. For the sake of saving space or ensuring a first level of privacy, the source code of
an application is usually not distributed. Using source code strippers or removing symbolic information are current
practices to reduce the size of an application before deployment. Furthermore, in open contexts such as mobile agent
platforms and open distributed systems, code is typically not known in advance. One can of course rebuild an AST
from bytecode, but this technique presents a number of challenges: bytecode-to-AST decompiling is a slow process,
and typically requires the decompiler to know about bytecode generation patterns used by the compiler so as to rebuild
meaningful AST nodes.

No original language warranty. Most mainstream languages today, such as Java, Squeak and C#, are based on a
virtual machine executing bytecodes, and these virtual machines are actually used as the execution engines of various
languages, other than the “original” ones. For instance, for the Croquet environment [30], a number of experimental
scripting languages have been developed, among them languages similar to JavaScript and LOGO. Another example is
the Python language, which can be compiled to Java bytecodes [31]. To provide practical performance, these languages
come with their own custom compiler that produces bytecode for a production-quality virtual machine. Therefore
a code transformation tool working at the AST level rebuilding the AST from bytecode would require a custom
decompiler. On the other hand, working on bytecode, although lower-level than AST, makes it possible to uniformly
apply transformations even in the presence of non-original languages.

Recompiling is slow. Finally, transforming source code means that a compiling phase is necessary afterwards to
regenerate bytecodes. Recompilation is a slow process, much slower than manipulating bytecode; benchmarks of
Section 5.3 validate this statement.

2.2. Bytecode transformation approaches

Due to the many reasons explained above, a wide variety of tools have been proposed that rely on bytecode trans-
formation. Surprisingly, most of these tools have been made for Java, and we are aware of very few related proposals
in the Smalltalk world.

Java and bytecode transformation. The Java standard environment only allows for bytecode transformation at load
time. At runtime, it is only possible to dynamically generate new classes from scratch, not to modify existing ones.
These restrictions have been somehow relaxed in the context of the JVM debugger interface (JDI) [32], but rely-
ing on the debugger interface is not reasonable in a production environment. Furthermore, the possibilities of class
reloading are strongly limited as, for instance, new members cannot be added to classes. Using load-time transfor-
mation in Java also raises a number of subtle issues related to class loaders and the way they define namespaces in
Java [33].

Level of abstraction. The experience gained with Java bytecode transformation tools brings a number of insights that
ought to be considered when designing a new framework. The most fundamental one is that of the level of abstraction
provided to programmers.

Tools like BCEL [28] and ASM [34] strictly reify bytecode instructions: as a consequence, users have to know
the Java bytecode language very well and have to deal with low-level details such as jumps and alternate bytecode
instructions (a Java method invocation can be implemented by several bytecode instructions, depending on whether
the invoked method is from an interface, is private, etc.).

On the contrary, Javassist [35] and Jinline [25] focus on providing source code level abstractions: although the actual
transformation is performed on bytecode, the API exposes concepts of the source language. This is highly profitable
to end users. In its latest version [29], Javassist even offers a lightweight online compiler so that injected code can be
specified as a string of source code. The Javassist compiler supports a number of dedicated metavariables, which can
be used to refer to the context in which a piece of code is injected.

As a matter of fact, bytecode-level manipulation is more complex than source-level manipulation because of the
many low-level details one needs to deal with. However, working at the bytecode level also makes it possible to express
code that is not directly expressable in the source language(s). This dilemma basically motivates the need for both APIs,
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as is done in Javassist: a high-level API provides source-level abstractions, and a low-level API provides bytecode-level
abstractions.

Proposals for Smalltalk. To the best of our knowledge there is no general-purpose bytecode manipulation tool for
a Smalltalk dialect. AOStA [36] is a bytecode-to-bytecode translator that aims at providing higher-level, transparent,
type-feedback-driven optimizations. It was not thought to be open to end users for bytecode manipulation.1 Method
wrappers [10] make it possible to wrap a method with before/after code. They are very fast to install and remove, as
they do not need to parse bytecode or generate methods, but are not a general-purpose transformation tool. Several
extensions actually need more power than just before/after control. AspectS [37] has been recently proposed as an
aspect-oriented interface to the reflective capabilities of Smalltalk combined with method wrappers (to implement
before/after advices). AspectS is actually a tool that would much profit from BYTESURGEON, as it would significantly
raise its expressive power.

2.3. Motivation

From the above, it should be clear that a general-purpose bytecode manipulation tool for Smalltalk is missing. Such
a tool ought to provide convenient abstractions to users, both at the source level and bytecode level. BYTESURGEON is
precisely such a tool. Beyond its interest for the Smalltalk community, BYTESURGEON also opens the door to a brand
new range of experiments with runtime bytecode transformations, since it has none of the limitations of existing Java
proposals. For instance, BYTESURGEON makes it possible to analyze concrete issues of fully dynamic AOP.

3. ByteSurgeon at work

BYTESURGEON is our library for runtime program transformation in Smalltalk, currently implemented in the Squeak
environment. BYTESURGEON complements the reflective abilities of Smalltalk [38] with the possibility to instrument
methods, down to method bodies. Smalltalk provides a great deal of structural reflection: the structure of the system is
described in itself. Structural reflection can be used to obtain the object representing any language entity. For instance,
the global variable Example stands for the class (the object representing the class) Example, and the object describing
the compiled method aMethod in class Example is returned by the expression Example � #aMethod. Dynamically
adding instance variables and methods to an existing class is fully supported by any standard Smalltalk environment.
However, the structural description of a Smalltalk system stops at the level of methods: compiled method cannot
be reflected upon. Conversely, BYTESURGEON can be used to do both introspection and intercession on compiled
methods.

3.1. Introspecting method bodies

Let us first see how BYTESURGEON is used to introspect method bodies. The following code statically counts the
number of instructions that occur in all methods of the class Example:

InstrCounter reset.
Example instrument:[ :instr | InstrCounter increase ]

The instrument: method is implemented in class Behavior. As a parameter it is given a block (of standard Smalltalk
code) that takes one argument. This block is an instrumentation block: for each instruction within all methods of the
class, the instrumentation block is evaluated with a reification of the current instruction as parameter. We will see later
what an instruction reification is. For now, suffices to say that for each instruction, a global counter is increased.

There are variants of the instrument: method for each particular language operation: constant, variable access,
read and store and message sending. For instance, instrumentSend: only evaluates the instrumentation block upon
occurrences of the message send operation. Besides calling the instrumentation method on a class, thereby affecting

1 Actually, BYTESURGEON could profitably use AOStA for its backend, but this study is left as future work.
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Fig. 1. Structural model of instructions in BYTESURGEON.

all its methods, we can call it on a single method:

SendMCounter reset.
(Example�#aMethod) instrumentSend: [ :send | SendMCounter increase]

3.2. Reification of language operations

Instructions in a method body are static occurrences of the operations of a language. BYTESURGEON supports mes-
sage send, access to instance variable and local variables, and constants. The structural model representing language
operations is shown in Fig. 1.2 This structural model is bytecode-based. It does not encode as much information as an
AST does, e.g., it is not possible to extract, from an IRSend, the instructions that correspond to the arguments of the
send. This is a limitation of bytecode-based transformation against AST-based transformation.

When calling an instrumentation method (i.e., instrument:, instrumentSend:) reification of instructions are built, as
instances of the appropriate class in the hierarchy, and passed to the instrumentation block. The instrumentation can
then introspect and change them. For instance, the following piece of code prints the selector of each message send
occurring within Example � #aMethod:

(Example�#aMethod) instrumentSend: [ :send | Transcript show: send selector printString; cr]
Method evaluation. A peculiar language operation is message receive (the callee-side equivalent of a message send).

Actually, a message receive is realized by two operations: method lookup and method evaluation. Since we are working
at the bytecode level, we do not have access to method lookup, only method evaluation. Rather than corresponding
to a bytecode instruction inside a method body, method evaluation corresponds to a method body as a whole. Since
BYTESURGEON treats all language operations in a uniform manner, methods have the same introspection and intercession
interface than instructions (e.g., see Section 3.3.3).

3.3. Modifying method bodies

BYTESURGEON supports two ways of modifying method bodies: a bytecode-level manner, where the user directly
specifies the required transformation in terms of bytecode representations, and a source-level manner, where the
transformation is specified with a string of source code. We hereby only present the source-level API. The bytecode-
level API is briefly mentioned in Section 4.3.

2 The isXXX methods (e.g., isSend) are provided as a convenience to avoid the use of visitors and double dispatch.
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Fig. 2. Metavariables supported by BYTESURGEON.

Similarly to Javassist [29], BYTESURGEON provides an online compiler that makes it possible to specify code to
be inserted as a string. The methods to insert code before, after and instead of an occurrence of a language operation
are named, respectively, insertBefore:, insertAfter: and replace:. They take as argument the source code as a string,
which is subsequently compiled by the BYTESURGEON compiler, and the resulting code is inserted at the appropriate
position. For instance, the following code inserts a call to the system beeper before each message send occurring within
Example � #aMethod:

(Example�#aMethod) instrumentSend: [ :send | send insertBefore: ‘Beeper beep’]
The code string can contain any valid Smalltalk code,3 plus two kinds of special variables: user-defined variables

to refer to statically available information, and metavariables for runtime information.

3.3.1. Accessing static information: user-defined variables
Statically known information about an instruction can be used in the construction of the string. For instance, the

following example records the name of selector of each message send occurring at runtime:

(Example�#aMethod) instrumentSend: [ :send |
send insertAfter: ‘Logger logSend:’, send selector printString]

Here we query the objects describing the message send operations for the name of the message sent. To ease
the construction of the string and avoid hard-to-understand string concatenation, BYTESURGEON makes it possible to
define custom variables with the syntax 〈: #variable〉 , and giving a list of association from variable names to object
references:4

(Example�#aMethod) instrumentSend: [ :send |
send insertAfter: ‘Logger logSend: 〈: #sel〉’ using: { #sel -> send selector}] .

3.3.2. Accessing runtime information: metavariables
The online compiler of BYTESURGEON also supports a number of predefined metavariables that refer to information

available at runtime, such as the receiver of a message send (Fig. 2). Metavariables are an essential part of the expres-
siveness of a good bytecode transformation framework. The exact set of available metavariables depends on both the
operation selected—in the case of a message send, metavariables are provided to refer to the sender, the receiver and the
arguments—and the transformation to perform—when inserting after, it is possible to access the result—. Metavariables
are denoted by the 〈meta: #variable〉 construct. For instance, the following code replaces each message send with a

3 self, super and thisContext have their usual meaning, knowing that this code will be evaluated in the place where it is inserted.
4 This is a limited sort of quasi-quoting a la Scheme; supporting true quasi-quoting (with no needs to specify manually the associations) is left

as future work.
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call to a dispatcher metaobject in charge of the actual method lookup [7,39]:

(Example�#aMethod) instrumentSend: [ :send | send replace:
‘CustcomDispatcher send: 〈: #selSymbol〉 to: 〈meta: #receiver〉

with: 〈meta: #arguments〉’ using: {#selSymbol -> send selector printString}]

The BYTESURGEON online compiler takes care of generating the code to access the runtime information denoted by
the metavariables, by adding a preamble before the inlined code. The runtime overhead due to preambles motivated us
to maintain a special syntax for metavariables (meta), to raise the attention of users that these variables should be used
conscientiously.

3.3.3. Altering method evaluation
To support transformation of method evaluation, method objects also support the insertBefore:, insertAfter: and

replace: messages. As an example, the following code inserts a trace before each evaluation of a method in Example:

Example instrumentMethods: [ :m |
m insertBefore: ‘Logger logExec: 〈: #sel〉’ using: { #sel -> m selector}]

The metavariables for method evaluation are the same as for message sending (see Fig. 2). The following example
uses a metavariable to access the method evaluation result:

Example instrumentMethods: [ :m |
m insertAfter: ‘Logger logExec: 〈: #sel〉 result: 〈meta: #result〉’ using: { #sel -> m selector}]

4. Inside ByteSurgeon

We now give an overview of the implementation of BYTESURGEON, in particular the relation with the closure compiler
and the transformation process. The low-level transformation API is also discussed.

4.1. Squeak

BYTESURGEON is currently implemented in Squeak [40], an open source implementation of Smalltalk-80 [41].
Squeak is based on a virtual machine that interprets bytecodes. During a normal compilation phase, method source
code is scanned and parsed, an AST is created and bytecodes are generated for the corresponding methods (Fig. 3).

To implement BYTESURGEON in Squeak we could have directly work on bytecode. However, rewriting bytecode is
tedious and error-prone for several reasons: the bytecode vocabulary is low-level, jumps have to be calculated by hand,
the expression of the context where bytecodes should be inserted is limited. Even simple modifications are surprisingly
tedious to manage. Fortunately, a new compiler for Squeak, the closure compiler, has been recently proposed which
offers a better intermediate bytecode representation.

4.2. The closure compiler and its intermediate representation

The closure compiler [42] relies on a more complex bytecode generation step (Fig. 4): first an Intermediate Repre-
sentation (IR) is created; then the IR is used to generate the real bytecode (the raw numbers).

Fig. 3. The standard Smalltalk to bytecode compiler.
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Fig. 4. The closure compiler.

The IR is a high-level representation of bytecode, abstracting away specific details: jumps are encoded in a graph
structure, sequences of bytecode-nodes form a basic block, and jump-bytecodes concatenate these blocks to encode
control flow. The main goal of IR is to abstract from specific bytecode encodings: for instance, although the bytecode
for a program in Squeak is encoded differently than in VisualWorks, their IR is identical. Using IR therefore makes the
porting to other bytecode sets simple.

The closure compiler has a counterpart, the decompiler, which converts bytecode back to text. Here, the whole
process works backwards: from bytecode to IR, from IR to AST, and finally from AST to text.

As motivated in Section 2.2, BYTESURGEON ought to offer adequate abstractions for both bytecode-level and source-
level transformations. The IR of the closure compiler actually represents an excellent alternative for working at the
bytecode level: it makes it possible to express code that is not directly obtainable from Smalltalk source code, while
abstracting away many details.

All classes reifying instructions (recall Fig. 1) are from the closure compiler IR. The low-level transformation API of
BYTESURGEON is based on these classes. In addition to the classes reifying instructions which correspond to language
operations, the IR includes classes reifying bytecode-only instructions: IRPop, IRDup, IRJump, IRReturn, etc.

4.3. Low-level transformation API

In Section 3, we have used the high-level API of BYTESURGEON to specify transformations giving a string of source
code, which may contain metavariables to access dynamic information. The description of the new code to be inlined
can also be done by directly editing the instruction objects for the IR hierarchy. In the following example, the selector
of all sends of the message oldMessage:with: are replaced by sends of the message newMessage:with:, by using the
selector: accessor of an IRSend object:

(Example�#aMeth) instrumentSend: [ :send | (send selector = #oldMessage:with:)
ifTrue: [send selector: #newMessage:with: ]].

The IRInstruction class can also be used as a factory to produce new objects describing bytecode. These objects can
be used in replacement of the original instruction or be inlined before or after it. An alternative implementation of the
code above is:

(Example�#aMeth) instrumentSend: [ :send | (send selector = #oldMessage:with:)
ifTrue: [send replace: (IRInstruction send: #newMessage:with:)]].

This implementation replaces the message send bytecode by a new one having a different selector. IRInstruction
send: #newMessage:with: returns an object that describes a message send bytecode.

Specifying the transformation at the bytecode-level makes it possible to express constructs that are impossible at
the level of the Smalltalk language, and to easily specify transformations that are more complex to express with the
source-level API. For instance, using the source-level API to change the selector of a message send, as done above, is
done as follows:

(Example�#aMeth) instrumentSend: [ :send | (send selector = #oldMessage:with:
ifTrue:) [send replace: ‘〈meta: #receiver〉 perform: #newMessage:with:

with: 〈meta: #arguments〉’]].
Apart from being slightly more verbose and relying on the use of the reflective message sending perform:with:, this

approach requires the use of metavariables, which are more costly due to the associated preambles that needs to be
generated (as shown in Section 4.4). Conversely, the low-level API makes it possible to do this transformation directly,
without requiring runtime reification.
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4.4. Implementation of metavariables

When BYTESURGEON instruments a method, the bytecode-to-IR part of the closure compiler generates the IR objects
that are passed to the instrumentation block specified by the user. If the source-level API is used, then the code to be
inserted is preprocessed to generate the IR nodes and to handle the metavariables, if any. For metavariables, a preamble
code is generated to ensure that the expected values will be on the stack. Then, the preamble and code are inserted into
the IR of the method. Finally, the IR-to-bytecode part of the closure compiler generates raw bytecodes and replaces
the old method with the new, transformed version.

In the following we explain the implementation of metavariables which reify runtime information. Let us consider
the reification of the receiver of a message send.

Preambles. Squeak uses a stack-based bytecode, so all parameters for a message send are pushed on the stack before
the send bytecode is executed: first the receiver, and then the arguments. For instance, the bytecode for the expression
3 + 4 is as follows:

77 pushConstant: 3
20 pushConstant: 4
B0 send: +
7C returnTop

Consider that we now want to provide access to receiver (3) via a metavariable:

(Example�#method) instrumentSend: [:send |
send insertBefore: ‘Transcript show: 〈meta: #receiver〉 asString’].

To support metavariables, we need to add bytecode to store the necessary values, by popping them from the stack
and storing them in additional temporary variables. In our example, we need the receiver. Since the receiver is deep in
the stack, below the arguments, we also need to store the arguments in temporary variables, to be able to access them
afterwards. In the case of before/after, it is also necessary to rebuild the stack. The resulting bytecode for our example
is as follows:

22 pushConstant: 3
23 pushConstant: 4
68 popIntoTemp: 0 “put argument in temp 0”
69 popIntoTemp: 1 “put receiver in temp 1”
24 pushLit: ##Transcript “start of inserted code”
11 pushTemp: 1 “push receiver for printing”
D5 send: asString
E6 send: show:
87 pop “end of inserted code”
11 pushTemp: 1 “rebuild the stack”
10 pushTemp: 0
B0 send: + “original code”
7C returnTop

To access all arguments as an array, the compiler generates code to create the array instance, to add arguments to it,
and to store the array in a temporary variable.

For performance and space reasons, preamble generation needs to be optimized. First, the compiler only generates
code for the metavariables that are effectively used in the inlined code. For instance, if access to the arguments is not
needed, then the array creation is avoided. The second important optimization is to reuse temporary variables. Indeed,
there are potentially many operations for which we need to generate a preamble, in a single method. If we used new
temporary variables for each, we would soon run out of temporary variables (Squeak imposes a limit of 256 temporary
variables per method). Therefore, BYTESURGEON remembers the original number of temporary variables and reuses
the variables added for each preamble. This information is saved inside the compiled method object, so that reuse of
variables works even if instrument: is executed several times on the same method.
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Inlining code. Once the preamble is added, the code to inline can be inserted. First, the BYTESURGEON compiler
generates the IR for the new code. For metavariables, the compiler generates code that loads the corresponding temporary
variables. The generated IR instructions are then added to the original IR of the method. If necessary, jump targets are
adjusted and basic blocks renumbered. The new method IR is then given to the closure compiler, which generates the
final raw bytecodes and installs the new method.

5. Validation

We now validate the interest of BYTESURGEON by showing how easy it is to implement two language extensions:
method wrappers [10] and a simple runtime MOP for controlling accesses to instance variables. Section 5.3 completes
this validation by reporting on performance measurements.

5.1. Method wrappers

Method wrappers [10] wrap a method with before/after behavior. Wrapping a method is implemented by swapping
out the compiled method by another one, valueWithReceiver:arguments: that calls the before method, then the original
method, and finally the after method:5

MethodWrapper � valueWithReceiver: anObject arguments: args
self beforeMethod.
ˆ[clientMethod valueWithReceiver: anObject arguments: args]
ensure: [self afterMethod]

The BSMethodWrapper class contains the logic to install an instance of itself as a method wrapper, with empty
before/after methods.

To define a wrapper, a subclass should be created, specifying the before/after methods. For instance, class Count-
ingMethodWrapper wraps a method to count invocation of calls to a given method:

BSMethodWrapper subclass: #CountingMethodWrapper
instanceVariableNames: ‘count’...

CountingMethodWrapper � beforeMethod
self count: self count + 1

To count the invocations on a method, we install the wrapper:

wrapper : = CountingMethodWrapper on: #aMethod inClass: Example.
wrapper install.

The installation of a method wrapper consists in first decompiling the before/after methods to IR (ir), stripping the
return at the end (strip), then replacing all self references to refer to the wrapper (replaceSelf:), and finally inlining the
before/after methods (insertBefore:after:):

BSMethodWrapper � inlineBeforeAfter
| before after |
before : = (self class lookupSelector: #beforeMethod) ir strip.
after : = (self class lookupSelector: #afterMethod) ir strip.

self replaceSelf: before. self replaceSelf: after.
self method insertBefore: before startSequence after: after startSequence.

5 At the time of this writing, BYTESURGEON does not yet support exception handlers, so we actually implemented a simplified version where
the after method is just inlined at the end of the method.
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BSMethodWrapper�replaceSelf: ir “replace self with pointer to me”
ˆir allinstructions do: [:instr|instr isSelf ifTrue: [instr replaceWith: (IRInstruction pushLiteral: self)]].

As we can see, method wrappers are straightforward to implement with BYTESURGEON. The complete implementation
included in the distribution consists of 41 lines of code, with comments. This implementation of method wrapper
should only serve as an example of use of BYTESURGEON, it is not meant to be a replacement yet since not all
features of method wrappers are supported. Furthermore, as illustrated in Section 5.3, standard method wrappers and
BYTESURGEON method wrappers have different performance profiles.

5.2. A small runtime MOP

We now show how to implement a small runtime MOP for controlling accesses to instance variables. A metaobject
can be associated to a class, and upon accesses to instance variables of objects from the class, it gets control via either
its instVarRead:in: method (if it is a read access) or its instVarWrite:in:value: method (if it is a write access). For
instance, the following TraceMO simply outputs what is happening to the transcript and then performs the standard
action, i.e., returning the instance variable value, or storing the new value:

TraceMO � instVarRead: name in: object
| val |
val : = object instVarNamed: name.
Transcript show: ‘var read: ’, val printString; cr.
ˆval.

TraceMO � instVarStore: name in: object value: newVal
Transcript show: ’var store: ’, newVal printString; cr.
ˆobject instVarNamed: name put: newVal.

This metaobject can be installed on class Point as follows:

MOP install: TraceMO new on: Point

The MOP � install method uses BYTESURGEON to replace the bytecodes that read or store instance variables with
calls to the metaobject (aka. hooks):

MOP class�install: mop on: aClass
| dict |
dict := Dictionary newFrom: #mo -> mop.
aClass instrumentInstVarAccess: [:instr |

dict at: #name put: instr varname.
instr isRead

ifTrue: [instr replace: ‘〈: #mo〉 instVarRead: 〈: #name〉 in:
self’ using: dict]

ifFalse: [instr replace: ‘〈: #mo〉 instVarStore: 〈: #name〉 in:
self value: 〈meta: #newvalue〉’ using: dict]].

The dict dictionary is used to hold the reference to the metaobject controlling accesses, and for each access instruc-
tion, the name of the variable is put in it. This makes it possible to use user-defined variables when specifying the
transformation.

Furthermore, since BYTESURGEON supports runtime bytecode manipulation, we are able to completely uninstall
hooks when needed:

MOP uninstall: MOExample.

Of course, this simple MOP is not complete: if methods are changed (recompiled), the MOP is removed, there is no
way to compose multiple metaobjects on the same class, it is not possible to associate different metaobjects to different
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Fig. 5. Comparing compilation and transformation times.

instances, etc. But the basic features are there: a MOP for instance variable accesses that can be installed and retracted
at runtime—and completely implemented in less than 10 lines—.

5.3. Benchmarks

We now report on several preliminary benchmarks6 we have performed to evaluate the efficiency of BYTESURGEON.
First, we report on transformation vs. compilation costs, and then study the performance of the standard implementation
of method wrappers with that based on BYTESURGEON.

Transformation performance. One of the reasons for editing bytecode instead of source is performance. To verify
this claim, we have carried out a simple set of benchmarks, in which we compare the time to compile some code with
both the standard compiler of Squeak and the new compiler (closure compiler), and the time taken by BYTESURGEON to
transform all instructions in the code with an empty block. Hence what we actually measure for BYTESURGEON is the
time it takes to decompile methods to IR, execute the block for each instruction (which does nothing), generate a new
identical method and install it.

The first benchmark is applied to the Object class:

“Test compilers”
[Object compileAll] timeToRun

“Test ByteSurgeon”
[Object instrument: [:inst | self ]] timeToRun

Class Object contains 429 methods, amounting to 2344 lines of code. We did the same experiment on a larger code
base: the whole hierarchy of collection classes. This hierarchy consists of 76 classes, 2231 methods, summing up to
15 783 lines of code. The benchmark is run as

“Test compilers”
[Collection allSubclasses do: [ :c | c compileAll ]] timeToRun

“Test ByteSurgeon”
[Collection allSubclasses do: [ :c | c instrument: [ :inst | self ]]] timeToRun

The results of both benchmarks are presented in Fig. 5. As expected, BYTESURGEON performs very well. The highly
optimized standard compiler is approximately twice slower than BYTESURGEON, while the new compiler, which is
much easier to reuse and extend but less optimized, is around six times slower.

Method wrapper performance. We now compare the performance of the standard implementation of method wrappers
with that based on BYTESURGEON. We compare both installation (transformation) time and execution time.

The test consists of a simple before/after counter manipulation wrapping a straightforward method:

Bench�run beforeMethod afterMethod
ˆ3+4. BCounter inc BCounter inc

6 Machine used: Apple PowerBook 1.5 GHz, Squeak 3.8.
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Fig. 6. Comparing installation and runtime performance of method wrapper implementations.

The benchmark of the installation/uninstallation is run as follows:

[1000 timesRepeat: [
w : = TestMethodWrapper on: #run inClass: Bench.
w install. w uninstall]] timeToRun

The runtime performance of both implementations is compared to that of method that directly implements the
wrapper:

Bench � run
| t |
BCounter inc.
t : = 3+4.
BCounter inc.
ˆt.

To be fair in our evaluation, we changed the execution semantics of standard method wrappers, so that they do not
wrap the after in an exception handler, but rather inline both before and after methods. The benchmark for both cases
is run as follows:

[1000000 timesRepeat: [Bench new run]] timeToRun
The results of the benchmarks (Fig. 6) show that BYTESURGEON is slower for installing wrappers. This was ex-

pected because method wrappers actually simply swap the wrapped compiled method with the wrapper one, while
BYTESURGEON actually modifies the original method. The other side of the coin is that BYTESURGEON -based method
wrappers are much more efficient at runtime. Standard method wrappers are 3.5 times slower than the hand-coded
version, while the BYTESURGEON implementation is as fast as the hand-coded version. The slight enhancement that
can be observed comes from the fact that, in the considered case, BYTESURGEON does not need to use a temporary
variable to store the return value, it just uses the stack.

6. Conclusion and future work

We have presented BYTESURGEON, an efficient library for runtime bytecode manipulation in Smalltalk, implemented
in Squeak. We have shown:

• APIs for specifying transformations that allow users to control the tradeoff between expressiveness and performance
for the code to be inlined: BYTESURGEON users can either specify Smalltalk code with metavariables or specify the
code at the bytecode level.

• the expressiveness of BYTESURGEON by showing how well-known language extensions are concisely expressed,
and reported on preliminary benchmarks validating our efficiency claim.

• the runtime capabilities of BYTESURGEON with a simple MOP that can be dynamically installed and retracted. Such
runtime changes are not feasible in a static system like Java without changing the virtual machine.

Future work can be dividing in two directions: the first is to continue improving BYTESURGEON as such, and the
second consists in using BYTESURGEON in a number of projects that will directly benefit from its features. Of course,
both tracks mutually benefit from each other.
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Regarding BYTESURGEON itself, there is a number of features that are being discussed at this time. In particular,
BYTESURGEON should be extended with support for exception handling. It is also appealing to offer a kind of proceed
instruction to trigger the execution of a replaced operation occurrence from inside the metacomputation. Another
direction to explore is that of the abstraction layer used to describe a method.As of now we use a bytecode representation,
but it would be interesting to explore the direct use of abstract syntax trees at this level. The choice between AST and
bytecode presents a tradeoff between performance and expressiveness: decompiling to AST and code-generation will
be slower than using the bytecode-level abstractions of the IR, but in turn we gain a lot in expressiveness and ease of
use, since AST is more structured than IR. We plan to explore these tradeoffs in the future.

As regards applications of BYTESURGEON in other projects, the perspectives are manifold. We plan to use
BYTESURGEON for code annotation to collect runtime traces of program execution to support omniscient debugging
[11]. Reflex is a system based on bytecode transformation providing partial behavioral reflection in Java [43]. It has
recently evolved to a versatile kernel for multi-language AOP [44], easing the implementation of (domain-specific)
aspect languages and providing support for the detection and resolution of aspect interactions. The on-going Geppetto
project aims at exploring the possibilities offered by an implementation of Reflex in Squeak, using BYTESURGEON,
enjoying the flexibility of true runtime code transformation.
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