
2024
ACTIVITY REPORT

Project-Team

EVREF

RESEARCH CENTRE

Inria Centre at the University of
Lille

IN PARTNERSHIP WITH:

Université de Lille, Berger-Levrault

Reflective Evolution of Ever-running
Software Systems

IN COLLABORATION WITH: Centre de Recherche en Informatique, Signal
et Automatique de Lille

DOMAIN

Networks, Systems and Services,
Distributed Computing

THEME

Distributed programming and Software
engineering

Contents

Project-Team EVREF 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 4

3 Research program 4
3.1 Research Axes within EVREF . 4
3.2 Axis 1 – Evolution of Ever-running Systems . 5
3.3 Axis 2 – New Generation Tools for Daily Tasks . 6
3.4 Axis 3 – A Generative Approach to Modular and Versatile Virtual Machines 6

4 Application domains 7
4.1 Programming Languages and Tools . 7
4.2 Software Reengineering . 7

5 Social and environmental responsibility 7
5.1 Footprint of research activities . 7
5.2 Impact of research results . 7

5.2.1 Environment . 7
5.2.2 Social . 7

6 Highlights of the year 8
6.1 Awards . 8

7 New software, platforms, open data 8
7.1 New software . 8

7.1.1 Moose . 8
7.1.2 Pharo . 8
7.1.3 Soil . 9
7.1.4 Microdown . 9
7.1.5 Illimani Memory Profiler . 9
7.1.6 Pillar . 10
7.1.7 Reflectivity . 10
7.1.8 Chest . 10
7.1.9 Debugging Spy . 11
7.1.10 Phex . 11
7.1.11 Sindarin . 11
7.1.12 Scopeo . 11
7.1.13 Druid . 12
7.1.14 Ranger . 12
7.1.15 Mutalk . 13
7.1.16 PharoVM . 13
7.1.17 HeapFuzzer . 13
7.1.18 OpalCompiler . 14

7.2 New platforms . 14
7.2.1 Pharo . 14
7.2.2 Moose . 14

8 New results 14
8.1 Evolution of Ever-running Systems . 14
8.2 New Generation Tools for Daily Tasks . 16
8.3 A Generative Approach to Modular and Versatile Virtual Machines 18
8.4 Crosscutting all Axis / Support . 19
8.5 Pharo for Live Coding Music . 20

9 Bilateral contracts and grants with industry 21
9.1 Berger Levrault, France . 21
9.2 Thales DMS, Brest, France: Graphics . 21
9.3 Thales DMS, Brest, France: Debugging . 21
9.4 Pharo Consortium . 22
9.5 Lifeware AG, Switzerland . 22
9.6 Dedalus . 22
9.7 CIFRE Framatome, Courbevoie, France . 22

10 Partnerships and cooperations 22
10.1 International initiatives . 22

10.1.1 Inria associate team not involved in an IIL or an international program 22
10.2 International research visitors . 23

10.2.1 Visits of international scientists . 23
10.2.2 Visits to international teams . 24

10.3 European initiatives . 24
10.3.1 H2020 projects . 24
10.3.2 Other european programs/initiatives . 25

10.4 National initiatives . 26
10.5 Regional initiatives . 28

11 Dissemination 28
11.1 Promoting scientific activities . 28

11.1.1 Scientific events: organisation . 28
11.1.2 Scientific events: selection . 29
11.1.3 Journal . 29
11.1.4 Invited talks . 30
11.1.5 Leadership within the scientific community . 30
11.1.6 Scientific expertise . 30
11.1.7 Research administration . 30

11.2 Teaching - Supervision - Juries . 30
11.2.1 Supervision . 31
11.2.2 Juries . 32

11.3 Popularization . 33
11.3.1 Specific official responsibilities in science outreach structures 33
11.3.2 Productions (articles, videos, podcasts, serious games, ...) 33
11.3.3 Participation in Live events . 33
11.3.4 Others science outreach relevant activities . 33

12 Scientific production 33
12.1 Major publications . 33
12.2 Publications of the year . 33

Project EVREF 1

Project-Team EVREF

Creation of the Project-Team: 2023 April 01

Keywords

Computer sciences and digital sciences

A2. – Software

A2.1. – Programming Languages

A2.1.3. – Object-oriented programming

A2.1.10. – Domain-specific languages

A2.1.12. – Dynamic languages

A2.2.1. – Static analysis

A2.2.3. – Memory management

A2.2.5. – Run-time systems

A2.2.7. – Adaptive compilation

A2.2.8. – Code generation

A2.5. – Software engineering

A2.5.3. – Empirical Software Engineering

A2.5.4. – Software Maintenance & Evolution

A2.5.5. – Software testing

A2.6. – Infrastructure software

A2.6.3. – Virtual machines

A2.6.4. – Ressource management

A4.4. – Security of equipment and software

Other research topics and application domains

B6. – IT and telecom

B6.1. – Software industry

B6.1.1. – Software engineering

B6.1.2. – Software evolution, maintenance

B6.5. – Information systems

https://radar.inria.fr/keywords/2024/computing
https://radar.inria.fr/keywords/2024/other

2 Inria Annual Report 2024

1 Team members, visitors, external collaborators

Research Scientists

• Stéphane Ducasse [Team leader, INRIA, Senior Researcher, HDR]

• Nicolas Anquetil [UNIV LILLE, Associate Professor Detachement, HDR]

• Christophe Bortolaso [BERGER-LEVRAULT, Senior Researcher]

• Steven Costiou [INRIA, Researcher]

• Marcus Denker [INRIA, Researcher]

• Nicolas Hlad [BERGER-LEVRAULT, Researcher]

• Guillermo Polito [INRIA, Researcher]

• Larisa Safina [INRIA, ISFP]

• Anas Shatnawi [BERGER-LEVRAULT, Researcher]

• Benoit Verhaeghe [BERGER-LEVRAULT, Researcher]

Faculty Members

• Anne Etien [UNIV LILLE, Professor, HDR]

• Imen Sayar [UNIV LILLE, Associate Professor]

PhD Students

• Omar Abedelkader [INRIA, from Oct 2024]

• Nour Agouf [AROLLA, until Jan 2024]

• Nour Ayachi [INRIA, from Nov 2024]

• Valentin Bourcier [INRIA]

• Gabriel Darbord [INRIA]

• Remi Dufloer [INRIA, from Dec 2024]

• Aless Hosry [INRIA]

• Sebastian Jordan Montaño [INRIA]

• Soufyane Labsari [INRIA]

• Federico Javier Lochbaum [INRIA, from Nov 2024]

• Fouazi Rayane Mokhefi [INRIA, from Oct 2024]

• Nahuel Palumbo [INRIA]

• Younoussa Sow [INRIA - FRAMATOME, CIFRE]

• Iona Thomas [INRIA, until Oct 2024]

Project EVREF 3

Technical Staff

• Christophe Demarey [INRIA, Engineer, 60%]

• Cyril Ferlicot-Delbecque [INRIA, Engineer]

• Esteban Lorenzano [INRIA, Engineer, Pharo Consortium]

• Hernan Federico Morales [INRIA, Engineer, until Nov 2024]

• Pablo Tesone [INRIA, Engineer, Pharo Consortium]

• Clotilde Toullec [INRIA, Engineer]

Interns and Apprentices

• Ikimath Adouke Adeoye [UNIV LILLE, Intern, from May 2024 until Jul 2024]

• Juan Ignacio Bianchi [INRIA, Intern, from Mar 2024 until Jul 2024]

• Mateo Boury [INRIA, Intern, from Apr 2024 until Aug 2024]

• Alexis Cnockaert [INRIA, Apprentice, from Nov 2024]

• Alexis Cnockaert [UNIV LILLE, from Apr 2024 until Aug 2024]

• Romain Degrave [Université de Lille, from Mar 2024 until Aug 2024]

• Enzo Demeulenaere [INRIA, Apprentice]

• Remi Dufloer [INRIA, Intern, from Mar 2024 until Aug 2024]

• Pol Durieux [INRIA, Apprentice, from Sep 2024]

• Pol Durieux [INRIA, Intern, until May 2024]

• Redwane Engels [UNIV LILLE, Intern, from Apr 2024 until Aug 2024]

• Renaud Fondeur [INRIA, Apprentice, from Nov 2024]

• Renaud Fondeur [INRIA, Intern, from May 2024 until Aug 2024]

• Angel Hely [UNIV LILLE, Intern, from Apr 2024 until Aug 2024]

• Julien Lamhene [INRIA, Intern, from May 2024 until Aug 2024]

• Yilin Liu [IMT LILLE DOUAI, Intern, until Mar 2024]

• Ignacio Esteban Losiggio [INRIA, Intern, from Oct 2024]

• Yasser Melki [INRIA, Intern, from Apr 2024 until Sep 2024]

• Marius Mignard [INRIA, Apprentice, from Dec 2024]

• Quentin Moutte [UNIV LILLE, Intern, from May 2024 until Jul 2024]

• Mohamed Oukas [UNIV LILLE, Intern, from Apr 2024 until Aug 2024]

• Sarah Tathy [INRIA, Intern, from May 2024 until Aug 2024]

• Fabio Vandewaeter [INRIA, Intern, from Apr 2024 until Jul 2024]

• Adrien Vanegue [INRIA, Apprentice, until Aug 2024]

4 Inria Annual Report 2024

Administrative Assistant

• Aurore Dalle [INRIA]

Visiting Scientists

• Dominico Cipriani [Independent Researcher and Musician, three visits]

• Ghizlane El Boussaidi [ETS MONTREAL, from Sep 2024 until Sep 2024]

• Balša Šarenac [University of Novi Sad, from Feb 2024, four visits]

2 Overall objectives

The objectives of EVREF are to study and support the continuous evolution of large software systems in a
holistic manner following three main axes: (1) analyses and approaches for migration and evolution of
existing (legacy) systems, (2) new tools to support daily evolution, and (3) infrastructure to build language
runtimes to support software evolution, new tools, frugal systems and security language features. In the
context of the first axis, we propose a specific research agenda with Berger-Levrault R&D.

Evolving large software systems is a challenge. Decades of academic research have somehow produced
tools and platforms that help companies to maintain their systems. But keeping legacy systems active
and relevant is still a really complex task. An aggravating challenge is that some of these systems can
never stop (production lines, wafer production systems, auction managers, etc) and need to be updated
while running at production sites. In addition, because the production environment is not the same as
the development environment, the only way to spot and fix a bug is often by directly accessing software
in production, while running.

Supporting the evolution of such ever-running systems is an important challenge for our industry be-
cause it must deal with more and more changing requirements and the need for dynamic adaptation. To
address this challenge EVREF works on (1) analyses and approaches based on language-specific metamod-
els and their accompanying processes such as test generation, semi-automated migration, or business
rule identification; (2) new generation debuggers, profilers and tools for reverse engineering — we tackle
new areas such as the support for non-functional requirements (robustness, memory consumption, ...)
—, (3) language and runtime infrastructure to support evolution, green computing, security, and tooling as
a step towards self-evolvable runtimes. The EVREF approach is reflective in the sense that by controlling
the underlying execution engine it will explore different facets of evolution and tooling.

3 Research program

EVREF is built around a holistic vision of the eternal software challenge. It acknowledges that we need to
be able to work on different levels to support the evolution of software under different scenarios. We work
on a full stack (still making progress in each area) creates a situation where the team will be in the position
to think and propose solutions that would not be possible otherwise. The emphasis of reflection in the
project title is that the axes can reflect and influence each other and can help each other in client/provider
of problems or solutions.

The agenda defined with Berger-Levrault acts a reality ground for this research agenda. The evolution
challenges faced by Berger-Levrault are still unresolved challenges that any software company has to
struggle with: testing to control migration, migration to new technology, business rule identification and
software maps are key challenges. They do not imply that the software is running and that migration
should happen while the system is executing but they are typical scenarios.

3.1 Research Axes within EVREF

The research axes in EVREF are built to form an articulated whole around the challenges of evolution of
constantly changing and running systems. The three axes are interconnected often in client relationships,

Project EVREF 5

e.g., profilers requires low-level information provided by virtual machines but virtual machines requires
advanced profilers. Controlling virtual machines opens the doors of many possibilities both at the level
of tools but also language design for isolation or security.

• Axis 1 – Evolution of Ever-running Systems. This axis is about how to effectively evolve large and
complex software. This covers a large spectrum of topics such as visualisation, metrics, analysis,...
This includes for example migration from one language to another or between different library
versions. This is within this axis that the team will work in partnership with Berger-Levrault. The
axis is built around the Moose platform 7.1.1 and its current redesign effort.

• Axis 2 – New Generation Tools for Daily Tasks. This axis is about how to offer advanced tools for
everyday development: it focuses on debuggers, profilers and tools to reverse engineer code. It
follows the work around debugging started in RMOD.

• Axis 3 – A Generative Approach to Modular and Versatile Virtual Machines. This axis is about
how to improve the building of virtual machines to support their exploration and application to
tools, security, green computing, . . . This axis is also providing infrastructure for the other axes.
The exploratory action is an important basis for this axis. In addition interactions with the Pharo
consortium engineers and the use of the industry level Pharo virtual machine will naturally take
place.

Production Virtual
Machine

New generation tools for daily tasksEvolution of ever-running systems

A Generative Approach to Modular and Versatile Virtual Machines

Benchmark / Evaluation
Platform

energy space speed

VM Distiller

C transpiler

NG Debuggers

Multi-focused Profillers

Reverse Engineering R2
Migration

UpdateTesting
AI

Tools

Non Functional
Requirements

Business
Rules

Maps

Evolution

Green
Security

Pharo
AOT Comp

Moose

IoT
Berger-Levrault

Pharo C
onsortium Alamvic

Figure 1: EVREF vision: Three interacting axes.

There are possible and welcomed overlaps between the areas covered in the interaction with Berger-
Levrault: for example transpilation is the basis of the Pharo VM compilation tool chain and migration
is a topic of interest for Berger-Levrault. Still we list such item in the axis because the research agenda
of EVREF is larger than its interaction with Berger-Levrault. A cross-fertilisation on the same topic will
happen but without one taking over the others.

The third axis, A Generative Approach to Modular and Versatile Virtual Machines, will also support
the other axes by exposing specific runtime information (such as exposing Polymorphic inline caches,
possibility of instrument object creation,...) or offering the possibility to extend the virtual machines with
new or modified low-level functionality. It will also take into account the needs and feedback from the
tool builders.

3.2 Axis 1 – Evolution of Ever-running Systems

Supporting software evolution is an important and challenging topic inherently linked to software. Indeed
software models the world and the world is changing. Therefore software evolution is ineluctable. In
EVREF we will work on fundamental aspects of software evolution:

6 Inria Annual Report 2024

• Towards automatic evolution. We will work on supporting semi-automated evolution in the case
of libraries update. We will extend our work and support both the library developers and their users
to migrate to more recent versions by analysing past activities and learning automated rules.

• Migration. We will enhance our metamodel-based approach of front-end migration to support
interlanguage migration.

• Non-functional requirement identification and extraction. To help developers during their
maintenance tasks we will take into account non-functional requirements (NFR) and propose
software maps and reverse engineering techniques to reveal such hidden software aspects.

• NFR aware code transformations. We will extend refactorings to support domain specific and
non-functional requirements.

3.3 Axis 2 – New Generation Tools for Daily Tasks

We will work on tools to support developers with a focus on improving daily development tasks.

• New Generation Debuggers will propose new debugging techniques such as object centric and
back in time debuggers.

• Multi-Layered profilers will rethink profilers and how systems are benchmarked.

• Reverse engineering revisited will revisit reverse engineering techniques taking into account
non-functional requirements such as memory consumption, security concerns and others.

3.4 Axis 3 – A Generative Approach to Modular and Versatile Virtual Machines

Virtual machines are a key assets both from an engineering and research point of view. As extremely
complex pieces of software (garbage collector, multi layered interpreters, speculative inliner), they raise
the question of their definition, construction and validation. As a research vehicule they are keys for
innovation at the level of language design, security, ever-running systems, or green computing. This axis
is based on the work the team did together with the Pharo consortium and the support of the Alamvic
Inria Exploratory Action led by G. Polito.

Main Objective. EVREF will explore how Virtual Machines are designed as a whole, and how they are
optimised for a large range of concerns that include not only execution speed but also energy and space
consumption, for applicability in security, green computing, IoT and robotics. Such research effort will
take place in the context of the Pharo virtual machines and its associated production chain.

• A transpilation chain. Based on our current architecture, we will design a transpilation chain that
will take into account heuristics (memory, concurrency, shipset, speed).

• Metamodeling and DSL for VM building. VM optimisations are complex and spread over many
aspects of the logic, we will evaluate how such optimisations can be represented and extracted to
be recomposed using a domain specific language.

• JIT compilers and optimizers. Building modern Just in time compilers and native dynamic optim-
izers is a difficult task but key to support modern language execution, we want to assess the design
and architecture of alternative dynamic optimizers.

• New Evaluation Methodologies. A VM is a complex piece of software with adaptative behavior. We
will work on ways to measure performance to be able to gather actionable information.

Project EVREF 7

4 Application domains

4.1 Programming Languages and Tools

Many of the results of EVREF are improving programming languages or development tools for such lan-
guages. As such the application domain of these results is as varied as the use of programming languages
in general. Pharo, the language that EVREF develops, is used for a very broad range of applications. The
use of Pharo spans from pure research experiments to real world industrial use. The Pharo Consortium
has more than 25 company members.

Examples are web applications, server backends for mobile applications or even graphical tools,
Music and embedded applications. For projects done with Pharo, we refer to the Pharo Success Stories.

4.2 Software Reengineering

Moose is a language-independent environment for reverse and re-engineering complex software systems.
Moose provides a set of services including a common meta-model, metrics evaluation and visualiza-
tion. As such Moose is used for analyzing software systems to support understanding and continuous
development as well as software quality analysis.

5 Social and environmental responsibility

5.1 Footprint of research activities

The main environmental footprint of EVREF is related to international travel. Meeting researchers in
person is indispensable for research.

We try to reduce travel by using online meetings as much as possible. The team tries to reduce impact
of daily local travel by the use of local transport and biking to work.

5.2 Impact of research results

5.2.1 Environment

Work on the execution environment of the Pharo programming language allows us to both improve
performance and lower energy consumption. Having the expertise and responsibility over the virtual
machine puts EVREF in a position where the team can easily make performance-efficiency tradeoffs
where necessary. These options would not be available for EVREF if the team used a more traditional
software stack.

Reengineering, in the context of software development, can be comprehended as a form of “recycling”.
This process is akin to giving a new lease of life to existing systems. Our innovative tools enable companies
to extend the lifecycle of their software systems significantly. By doing so, they can continue utilizing
their current systems for a more extended period, thereby curtailing the need to invest in entirely new
projects. This approach not only optimizes resource utilization but also substantially lessens the environ-
mental footprint associated with software development. The reduced frequency of creating new software
from scratch means less energy consumption and waste generation during the development process.
Moreover, this practice aligns seamlessly with sustainable development goals, as it promotes efficient use
of resources and minimizes the ecological impact of technological advancement. In essence, through
reengineering, companies can achieve a dual objective: enhancing the longevity and functionality of
their software while contributing positively to environmental conservation.

5.2.2 Social

All software we develop as part of our research is released as Open Source, all our publications are
available in the HAL archive.

http://consortium.pharo.org
http://pharo.org/success

8 Inria Annual Report 2024

6 Highlights of the year

• EVREF organized the 2024 International European Smalltalk Usergroup Conference (ESUG) in Lille
with 124 participants (8th to 11th of July 2024)

• Release of Pharo 12 (pharo.org)

6.1 Awards

• Prix 2024 de la science ouverte pour la thèse de Benoit Verhaeghe

7 New software, platforms, open data

7.1 New software

7.1.1 Moose

Name: Moose: Software Analysis and Re-engineering Platform

Keywords: Software engineering, Meta model, Software visualisation, Parsing, Software quality, Code
analysis

Scientific Description: Moose is a program manipulation platform based on a generic meta-model of
programming languages.

A collection of atomic properties of programming languages (eg. an entity has a name, it can be
invoked, it has a type, ...) allows to build specialized meta-models for each programming language.

The Moose analysis platform is based on these atomic properties to offer generic tools independent
of the programming languages handled.

Functional Description: Moose is an open and extensible platform for software analysis and re-engineering.

It integrates language models, metrics, analysis algorithms, and visualization and navigation
engines. Moose’s development has been estimated at 200 man-years.

URL: https://modularmoose.org

Publication: hal-02972159v1

Contact: Stephane Ducasse

Participants: Anne Etien, Nicolas Anquetil, Stephane Ducasse

Partners: Université de Berne, Sensus, Pleiad, USI, Vrije Universiteit Brussel, Berger-Levrault

7.1.2 Pharo

Name: The platform Pharo

Keywords: Live programmation objet, Reflective system, Web Application, Test, Virtual Machine Image,
Object-Oriented Programming

Functional Description: Pharo is a pure object reflective and dynamic language inspired by Smalltalk.
In addition, Pharo comes with a full advanced programming environment developed under the
MIT License. It provides a platform for innovative development both in industry and research.
By providing a stable and small core system, excellent developer tools, and maintained releases,
Pharo’s goal is to be a platform to build and deploy mission critical applications, while at the same
time continue to evolve.

Release Contributions: Better, faster, cleaner

http://pharo.org
https://modularmoose.org
https://hal.inria.fr/hal-02972159v1

Project EVREF 9

URL: http://www.pharo.org

Publication: hal-03687932v1

Contact: Marcus Denker

Participants: Steven Costiou, Christophe Demarey, Esteban Lorenzano, Marcus Denker, Stephane
Ducasse, Guillermo Polito, Pablo Tesone

Partners: BetaNine, Reveal, Inceptive, Netstyle, Feenk, ObjectProfile, GemTalk Systems, Greyc Université
de Caen - Basse-Normandie, Université de Berne, Yesplan, RMod, Sensus, Université de Bretagne
Occidentale, École des Mines de Douai, ENSTA, Uqbar foundation Argentina, ZWEIDENKER, Life-
Ware, JPMorgan Chase, KnowRoaming, ENIT, Spesenfuchs, FINWorks, Esug, FAST, Ingenieubüro
Schmidt, Projector Software, HRWorks, Inspired.org, Palantir Solutions, High Octane, Soops, Osoco,
Ta Mère SCRL, University of Yaounde 1, Software Quality Laboratory, Software Institute Università
della Svizzera italiana, Universdad Nacional de Quilmes, UMMISCO IRD, Université technique de
Prague

7.1.3 Soil

Name: Soil DB

Keywords: Object-Oriented Programming, Databases

Functional Description: Soil is an object oriented database in pharo. It is transaction based having
ACID transactions. It has binary search capabilities with SkipList and BTree+ indexes. It aims to be a
simple yet powerful database making it easy to develop with, easy to debug with, easy to inspect,...

URL: https://github.com/ApptiveGrid/Soil

Publication: hal-04726251

Contact: Marcus Denker

Participant: Marcus Denker

Partner: ApptiveGrid GmbH

7.1.4 Microdown

Name: Microdown: a minimal but extensible markdown

Keyword: Document

Functional Description: Microdown is the definition and implementation of a minimal markdown that
is extensible. It integrates into the Pillar document compilation chain.

URL: https://github.com/pillar-markup/Microdown

Contact: Stephane Ducasse

7.1.5 Illimani Memory Profiler

Name: Illimani Memory Profiler

Keywords: Non volatile memory, Smalltalk, Object-Oriented Programming

Functional Description: Illimani is a library of memory profilers. It provides a memory allocation
profiler and a finalization profiler. The allocation profiler gives you information about the allocation
sites and where the objects where produced in your application. The finalization profiler gives
you information about how much time did the objects lived, and about how many GC cycles (both
scavenges and full GC) they survived.

http://www.pharo.org
https://hal.inria.fr/hal-03687932v1
https://github.com/ApptiveGrid/Soil
https://hal.inria.fr/hal-04726251
https://github.com/pillar-markup/Microdown

10 Inria Annual Report 2024

URL: https://github.com/jordanmontt/illimani-memory-profiler

Contact: Sebastian Jordan Montano

7.1.6 Pillar

Keywords: HTML, LaTeX, HTML5

Functional Description: Pillar is a markup syntax and associated tools to write and generate document-
ation and books.

Pillar is currently used to write several books and other documentation.

URL: https://github.com/Pillar-markup/pillar

Contact: Stephane Ducasse

7.1.7 Reflectivity

Keywords: Object-Oriented Programming, Reflective system, Metaprogramming

Functional Description: Reflectivity is a framework for behavioral reflection.

Using Reflectivity, developers annotate Abstract Syntax Tree (AST) nodes with meta-behavior
which is taken into account by the compiler to produce behavioral variations. Reflectivity brings
a practical way of working at the AST level, which is a high-level representation of the source
code manipulated by software developers. It enables a powerful way of dynamically add and
modify behavior. Reflectivity is also a flexible mean to bridge the gap between the expression of the
meta-behavior and the source code. This ability to apply unanticipated adaptation and to provide
behavioral reflection led to many experiments and projects during this last decade by external
users. Existing work use Reflectivity to implement reflective libraries or languages extensions,
featherweight code instrumentation, dynamic software update, debugging tools and visualization
and software analysis tools.Grounding. Reflectivity is actively used in research projects.

Reflectivity is part of Pharo and shipped with the default Pharo download.

URL: http://pharo.org

Publication: hal-02480136

Contact: Marcus Denker

Participants: Marcus Denker, Steven Costiou

7.1.8 Chest

Keywords: Debug, Object-Oriented Programming

Functional Description: Chest is a Pharo tool providing an API and a Graphical User Interface (GUI) to
store and access objects from anywhere in the Pharo system.

URL: https://github.com/pharo-spec/Chest

Contact: Steven Costiou

Participants: Steven Costiou, Adrien Vanegue

https://github.com/jordanmontt/illimani-memory-profiler
https://github.com/Pillar-markup/pillar
http://pharo.org
https://hal.inria.fr/hal-02480136
https://github.com/pharo-spec/Chest

Project EVREF 11

7.1.9 Debugging Spy

Keyword: Debug

Functional Description: A tool to spy on debugging actions for research experiments conducted with
Pharo.

URL: https://github.com/Pharo-XP-Tools/DebuggingSpy

Contact: Steven Costiou

Participants: Adrien Vanegue, Steven Costiou

7.1.10 Phex

Name: PHaro EXperience toolbox

Keyword: Debug

Functional Description: A tool to define, build, drive and conduct empirical experiments with Pharo.

URL: https://github.com/Pharo-XP-Tools/Phex

Contact: Steven Costiou

Participant: Steven Costiou

7.1.11 Sindarin

Keywords: Object-Oriented Programming, Software engineering, Debug

Functional Description: Sindarin is a versatile and interactive debugger scripting API for object-oriented
programming languages. Sindarin is designed to help building dedicated debugging tools targeting
specific problems or domains. To do this, Sindarin attaches to a running process then exposes
stepping and introspection operations to control, manipulate and observe that process’ execution.
It simplifies the creation of personalized debugging scripts by providing an AST-based API, thus
also proposing different stepping granularity over the debugging session. Once written, scripts are
extensible and reusable on other scenario, and can be used to build more complex debugging tools.

URL: https://github.com/pharo-spec/ScriptableDebugger

Publications: hal-04850901, hal-02280915

Contact: Steven Costiou

Participants: Steven Costiou, Adrien Vanegue, Stephane Ducasse, Guillermo Polito

7.1.12 Scopeo

Keywords: Debug, Object-Oriented Programming

Functional Description: Scopeo is an omniscient debugger that allows developers to ask questions in
the form of queries that collect objects and events related to those objects. Scopeo allows developers
to save subsets of a query’s results so that they can be reused as subjects for new, more refined
queries. This supports the refinement of hypotheses that developers make during debugging.
Thanks to the omniscient backend that Scopeo relies on (Seeker), Scopeo provides the ability to
navigate back and forth in the execution and, more specifically, to jump to any point in time where
a collected object-related event was triggered.

URL: https://github.com/scopeo-project/ScopeoExampleERA

Publication: hal-04627606

Contact: Valentin Bourcier

Participants: Valentin Bourcier, Steven Costiou

https://github.com/Pharo-XP-Tools/DebuggingSpy
https://github.com/Pharo-XP-Tools/Phex
https://github.com/pharo-spec/ScriptableDebugger
https://hal.inria.fr/hal-04850901
https://hal.inria.fr/hal-02280915
https://github.com/scopeo-project/ScopeoExampleERA
https://hal.inria.fr/hal-04627606

12 Inria Annual Report 2024

7.1.13 Druid

Name: Druid Meta-Compilation Infrastructure

Keywords: Compilers, Source-to-source compiler, Optimizing compiler, Interpreter, Software engineer-
ing

Functional Description: JIT (Just-in-Time) compilers are an optimization technique often used for
interpreted languages and virtual machines. They allow to spend time optimizing only frequently
used code, while falling back in slower execution engines for non-frequent code. For example, the
Pharo and the Java VM run on a bytecode interpreter and eventually compile machine code for
methods that are frequently called.

Nowadays, the Pharo Virtual Machine is implemented in a subset of the Pharo language called
Slang. The Virtual Machine developers then benefit from the high-level tools used to work with
Pharo code, such as the code editors, testing frameworks and debuggers. In a later stage, the Virtual
Machine code written in Slang is transpiled to C and then compiled to the target architectures.

The current Pharo JIT compiler that is part of the Virtual Machine, aka Cogit, implements an
architecture based on templates of native code per bytecode. When a method is compiled, each
bytecode is mapped to its corresponding template. All templates are concatenated to form a single
machine code method. This architecture has as drawback that the behavior of the Pharo language
is duplicated in both the bytecode interpreter and their corresponding machine code templates.

The Druid project explores the automatic generation of machine code templates from bytecode
interpreters using an abstract interpreter on the existing bytecode interpreter (a meta-interpreter).

URL: https://github.com/Alamvic/druid/

Contact: Guillermo Polito

7.1.14 Ranger

Keywords: Symbolic testing, Software testing, Concolic Execution, Interpreter, Compilation

Functional Description: Les implémentations de langages modernes utilisant des machines virtuelles
comportent divers moteurs d’exécution tels que des interprètes de code-octet et des traducteurs
dynamiques de code-machine, c’est-à-dire des compilateurs JIT. Pour valider ces moteurs, il faut
non seulement valider chacun d’entre eux de manière isolée, mais aussi s’assurer qu’ils sont
fonctionnellement équivalents. Les tests doivent être dupliqués pour chaque moteur d’exécution
en exerçant les mêmes chemins d’exécution sur chacun d’entre eux.

Ranger présente une nouvelle approche de test automatisé pour les machines virtuelles dotées
d’interpréteurs de code à octets. Ranger utilise la méta-interprétation concolique :

il applique des tests concoliques à un interpréteur de code à octets afin d’explorer tous les chemins
d’exécution possibles de l’interpréteur et d’obtenir une liste de valeurs concrètes qui explorent ces
chemins. Il utilise ensuite ces valeurs pour appliquer des tests différentiels à l’interpréteur VM et
au compilateur JIT.

Cette solution est basée sur deux idées : (1) l’interprète et le compilateur implémentent la même
sémantique du langage et (2) les interprètes sont de simples spécifications exécutables de cette
sémantique et donc des cibles prometteuses pour une (méta-) interprétation à l’aide de tests
concoliques. Nous l’avons validé sur 4 compilateurs différents de la machine virtuelle open-source
Pharo et avons trouvé 468 différences entre eux, produites par 91 causes différentes, organisées en
6 catégories différentes.

URL: https://github.com/Alamvic/ranger

Contact: Guillermo Polito

https://github.com/Alamvic/druid/
https://github.com/Alamvic/ranger

Project EVREF 13

7.1.15 Mutalk

Keywords: Mutation analysis, Mutation testing, Software testing

Functional Description: During the 70s, mutation testing emerged as a technique to assess the fault-
finding effectiveness of a test suite. It works mutating objects’ behavior and looking for tests to
“kill” those mutants. The surviving mutants are the starting point to writing better tests. Thus, this
technique is an interesting alternative to code coverage regarding test quality.

However, so far it is a “brute force” technique that takes too long to provide useful results. This
characteristic has forbidden its widespread and practical use regardless the existence of new
techniques, such as schema-based mutation and selective mutation. Additionally, there are no
mutation testing tools (to our knowledge) that work on meta-circular and dynamic environments,
such as Smalltalk, so compile and link time are the current technique’s bottleneck.

This Smalltalk-based tool was developed at the University of Buenos Aires (Argentina) in the context
of the final thesis work. The tool uses Smalltalk’s dynamic and meta-programming facilities to
notably reduce the time to get valuable output and help to understand and implement new tests
due to its integration with the rest of the environment.

URL: https://github.com/pharo-contributions/mutalk

Contact: Guillermo Polito

7.1.16 PharoVM

Name: Pharo Virtual Machine

Keywords: Compilation, Interpreter, Virtual Machine, Garbage Collection, Interoperability

Functional Description: The current implementation presents the following core features:

- an indirect threaded bytecode compiler using GNU extensions - a generational scavenger garbage
collector: semi-space + nursery for the young generation, a mark-compact collecting for the old
generation - a space for permanent objects that need not to be scanned by the GC - a baseline JIT
compiler that - translates primitive operations using IR templates - translates bytecode methods
using a simple abstract interpretation approach to reduce memory pressure (less loads/stores) -
FFI through the well-known libFFI, and support for non-blocking FFI using worker threads

URL: https://github.com/pharo-project/pharo-vm/

Contact: Guillermo Polito

7.1.17 HeapFuzzer

Keywords: Fuzzing, Memory Allocation, Garbage Collection

Functional Description: Fuzzer directement un gestionnaire de mémoire nous permet de contrôler
des aspects tels que l’emplacement où les objets sont alloués, et des événements de bas niveau
tels que les invocations du GC et leurs paramètres. Notre solution génère de grandes séquences
d’événements aléatoires sur le tas qui exercent les algorithmes de ramassage des ordures pour
générer des pannes de VM et trouver des bogues. Nous combinons le fuzzing avec un algorithme de
réduction des tests qui trouve le plus petit sous-ensemble d’événements reproduisant un problème.

URL: https://github.com/Alamvic/heapFuzzer

Contact: Guillermo Polito

https://github.com/pharo-contributions/mutalk
https://github.com/pharo-project/pharo-vm/
https://github.com/Alamvic/heapFuzzer

14 Inria Annual Report 2024

7.1.18 OpalCompiler

Keywords: Compilation, Compilers, Bytecode, Object, Object-Oriented Programming

Functional Description: Opal is the compiler that compiles source code to bytecode in Pharo.

Opal uses the Parser and AST of Pharo as input (which is used for syntax highlighting, refactoring
and other tools). It does name analysis, annotating this AST before generating an Intermediate
Representation (IR) with bytecode level abstractions. The IR is then used to generate bytecode and
create a Pharo method.

Opal is part of Pharo and shipped with Pharo by default.

URL: http://pharo.org

Contact: Marcus Denker

7.2 New platforms

The team produces and maintains two large platforms: Pharo and Moose. See Section on New Software
for a description.

7.2.1 Pharo

Pharo pharo.org - Pharo is a dynamic reflective language and its environment 7.1.2.

Participants: P. Tesone, engineer consortium, 100%, E. Lorenzano, engineer consor-
tium, 100%, C. Demarey, engineer Inria, 80%, S. Ducasse, researcher,
25%, G. Polito, researcher, 50%, M. Denker, researcher, 50%, S. Costiou,
researcher, 30%, H. Morales, engineer on contract, 80%, M. Dias, en-
gineer on contract, 100%, Chile, C. Hernandez, engineer on contract,
12 months 50%, Chile.

7.2.2 Moose

Moose modularmoose.org - Moose is meta environment to build analyses and tools of software systems
7.1.1.

Participants: N. Anquetil, researcher, 40%, A. Etien, Professor, 40%, I. Sayar, MCF,
40% , L. Safina, ISFP, 40% , C. Toullec, engineer, 100% , C. Ferlicot-
Delbecque, engineer on contract, 100%.

8 New results

We present the results of the year for the three axis of EVREF.

8.1 Evolution of Ever-running Systems

Participants: Imen Sayar, Anne Etien, Nicolas Anquetil, Gabriel Darbord, Ben-
oit Verhaeghe, Iona Thomas, Stéphane Ducasse, Pablo Tesone,
Guillermo Polito.

http://pharo.org
http://www.pharo.org
https://modularmoose.org

Project EVREF 15

Identifying and fixing ambiguities in, and semantically accurate formalisation of, behavioural require-
ment

To correctly formalise requirements expressed in natural language, ambiguities must first be identified
and then fixed. We focus on behavioural requirements (i.e. requirements related to dynamic aspects and
phenomena). Its first objective is to show, based on a practical, public case study, that the disambiguation
process cannot be fully automated: even though natural language processing (NLP) tools and machine
learning might help in the identification of ambiguities, fixing them often requires a deep, application-
specific understanding of the reasons of being of the system of interest, of the characteristics of its
environment, of which trade-offs between conflicting objectives are acceptable, and of what is achievable
and what is not; it may also require arduous negotiations between stakeholders. Such an understanding
and consensus-making ability is not in the reach of current tools and technologies, and will likely remain
so for a long while. Beyond ambiguity, requirements are often marred by various other types of defects
that could lead to wholly unacceptable consequences. In particular, operational experience shows that
requirements inadequacy (whereby, in some of the situations the system could face, what is required is
woefully inappropriate or what is necessary is left unspecified) is a significant cause for systems failing to
meet expectations. The second objective is to propose a semantically accurate behavioural requirements
formalisation format enabling tool-supported requirements verification, notably with simulation. Such
support is necessary for the engineering of large and complex cyber-physical and socio-technical systems
to ensure, first, that the specified requirements indeed reflect the true intentions of their authors and
second, that they are adequate for all the situations the system could face. To that end, we present an
overview of the BASAALT (Behaviour Analysis and Simulation All Along systems Life Time) systems engin-
eering method, and of FORM-L (FOrmal Requirements Modelling Language), its supporting language,
which aims at representing as accurately and completely as possible the semantics expressed in the
original, natural language behavioural requirements, and is markedly different from languages intended
for software code generation. We show that generally, semantically accurate formalisation is not a simple
paraphrasing of the original natural language requirements: additional elements are often needed to
fully and explicitly reflect all that is implied in natural language. To provide such complements for the
case study presented, we had to follow different formalisation patterns, i.e. sequences of formalisation
steps. To avoid being skewed by what a particular automatic tool can and cannot do, BASAALT and
FORM-L were applied manually. Still, the lessons learned could be used to specify and develop NLP tools
that could assist the disambiguation and formalisation processes. However, more studies are needed to
determine whether an exhaustive set of formalisation patterns can be identified to fully automate the
formalisation process. [17]

Automatic Recommendations for Evolving Relational Databases Schema
Relational databases play a central role in many information systems. Their schema contains struc-

tural (e.g. tables and columns) and behavioral (e.g. stored procedures or views) entity descriptions. Then,
just like for “normal” software, changes in legislation, offered functionalities, or functional contexts,
impose to evolve databases and their schemas. But in some scenarios, it is not so easy to deconstruct a
wished evolution of the schema into a precise sequence of operations. Changing a database schema may
impose manually dropping and recreating dependent entities, or manually searching for dependencies
in stored procedures. This is important because getting even the order of application of the operators
can be difficult and have profound consequences. This meta-model allows us to compute the impact of
planned changes and recommend additional changes that will ensure that the RDBMS constraints are
always verified. The recommendations can then be compiled into a valid SQL patch actually updating
the database schema in an orderly way. We replicated a past evolution showing that, without detailed
knowledge of the database, we could perform the same change in 75% less time than the expert database
architect. We also exemplify the use of our approach on other planned changes. [28]

A Multi-Language Tool for Generating Unit Tests from Execution Traces
Legacy software systems often lack extensive testing, but are assumed to behave correctly after years

of bug fixes and stable operation. Migrating or modernizing these systems is challenging because there
is little support for preventing regressions. Test carving addresses this problem by generating unit tests
based on the current behavior of the system, treating it as an implicit oracle. We present Modest, a
multi-language tool that generates unit tests by carving them from execution traces. Modest processes

16 Inria Annual Report 2024

method calls, including their receivers, arguments, and results, to recreate these invocations as unit tests.
Its model-based approach allows it to support multiple languages. We detail how it can be extended to
handle additional languages. Modest aims to generate tests that are human-readable and maintainable
over time. To achieve this, it reconstructs values as source code rather than relying on deserialization. We
evaluate Modest by generating tests for both Java and Pharo applications. [20]

Pharo: A Reflective Language - Analyzing the Reflective API and Its Internal Dependencies
Reflective operations are powerful APIs (Application Programming Interface) that let developers build

advanced tools and architectures. Reflective operations are used for implementing tools and development
environments (e.g., compilers, debuggers, inspectors) or language features (e.g., distributed systems,
exceptions, proxies, aspect-oriented programming). In addition, languages are evolving, introducing
better concepts, and revising practices and APIs. Since 2008 Pharo has evolved from Squeak and its
reflective API has evolved accordingly, diverging consequently from the original Smalltalk reflective
API. With more than 500 reflective methods identified, Pharo has one of the largest reflective feature
sets ranging from structural reflection to on-demand stack reification. Those operations are often built
on top of the other, creating different layers of reflective operations, from low-level to high-level ones.
There is a need to understand the current reflective APIs to understand their underlying use, potential
dependencies, and whether some reflective features can be scoped and optional. Such an analysis is
challenged by new metaobjects organically introduced in the system, such as first-class instance variables,
and their mixture with the base-level API of objects and classes. In this article, we analyze the reflective
operations used in Pharo 12 and their interdependencies. We propose a classification based on their
semantics and we identify a set of issues of the current implementation. Such an analysis of reflective
operations in Pharo is important to support the revision of the reflective layer and its potential redesign.
[8]

8.2 New Generation Tools for Daily Tasks

Participants: Iona Thomas, Stéphane Ducasse, Pablo Tesone, Steven Costiou,
Maximilian Ignacio Willembrinck Santander, Adrien Vanègue,
Valentin Bourcier, Anne Etien, Maximilian Willembrinck,
Stéphane Ducasse, Balša Šarenac, Guillermo Polito, Nicolas An-
quetil, Gabriel Darbord, Fabio Vandewaeter, Benoit Verhaeghe.

Assessing Reflection Usage with Mutation Testing Augmented Analysis
Reflection is a powerful tool that allows a program to manipulate itself during its execution. However,

developers may use it to circumvent data encapsulation and method visibility modifiers. Thus, it is
important to assess how much an application relies on reflection. Nonetheless, reflection is mostly
incompatible with static analysis as it relies on runtime information (e.g., to determine the attribute
to be accessed or the method to evaluate). These problems worsen with dynamically-typed languages,
where reflective operations are polymorphic with non-reflective operations, e.g., in Pharo, array access is
polymorphic with context variable modifications. We present RAPIM, an approach to study the uses of
reflective APIs: it uses mutation analysis with a new mutation operator for dealing with core reflective
methods. We analyze a serialization library from a developer perspective, showing the information it
reveals. We evaluate our approach on a selection of five projects by comparing its performance against
static analysis. We show that out of five projects, RAPIM disambiguates more potentially reflective call-
sites than the static analysis. When the code coverage is good, the percentage of disambiguation is three
times higher. Finally, we question the relevance of polymorphism between non-reflective and reflective
APIs. Out of five projects, only one uses it, for only 1.4% of potentially reflective call-sites. We argue that
reflective APIs could be renamed to avoid ambiguities. [19]

Time-Traveling Object-Centric Breakpoints
Object-centric breakpoints aim to facilitate the debugging of object-oriented programs by focusing on

specific objects. However, their practical application faces limitations. They often produce false positives
and require developers to identify objects to debug in a running program, which is sometimes not possible

Project EVREF 17

due to non-determinism. Additionally, object-centric breakpoints are difficult to build because, to the
best of our knowledge, their implementations have never been abstracted from low-level concerns. The
literature describes complex reflective architectures necessary for implementing these breakpoints, and
their rare available implementations are language-specific. We introduce Time-Traveling Object-Centric
Breakpoints (TTOCBs), a new definition and implementation of object-centric breakpoints based on
Time-Traveling Queries (TTQs). TTQs are an extensible time-traveling debugging system that allows
developers to explore their program executions back and forth by executing debugging queries. We argue
that our query-based implementation helps to overcome the limitations of traditional object-centric
breakpoints. We describe how TTOCBs assist developers in searching for objects to debug within their
program executions, even in the presence of non-determinism. We illustrate how existing object-centric
breakpoints from the literature can be implemented and how new ones can be created in a few steps using
the TTQ abstractions and scripting API. To build breakpoints, developers need to familiarize themselves
with a short API instead of learning language reflection techniques and libraries. This makes our TTOCBs
independent of the underlying TTQs and debugger implementations. To evaluate our solution, we con-
ducted an initial anecdotal user study on four example scenarios, providing evidence that debugging
with TTOCBs requires fewer actions than with traditional object-centric breakpoints. We then discuss the
comparison between object-centric breakpoints and TTOCBs in terms of applicability and performance.
[2]

Debugging Activity Blueprint
Empirically analyzing debugging activity is notoriously difficult. In particular, aggregating data (ob-

tained from either observation or event logging) to verify hypotheses on developers’ behavior is known to
be challenging. Overall, the difficulty of studying debugging activities contributes to the need for more
empirical evidence on how practitioners use debuggers. We propose debugging activity blueprint as a
visual tool to analyze and navigate through all the events recorded in a programming environment. Our
blueprint is a polymetric view representing the interaction between debuggers and other programming
tools. Our blueprint highlights the flow of a debugging activity across the tools an IDE offers. An explor-
atory use case over three participants and two debugging tasks indicates that our blueprint supports a
fine-grained analysis of complex debugging scenarios. [9]

Scopeo: An Object-Centric Debugging Approach for Exploring Object-Oriented Programs
Debugging object-oriented programs requires understanding how objects interact with each other

and how their state evolves during execution. It is an arduous activity, as there are no methods to sup-
port finding objects to debug and explore their interactions. We present Scopeo, a novel object-centric
approach to explore objects and their interactions in object-oriented programs. We evaluate the perform-
ance of Scopeo and conclude its applicability to real debugging scenarios. We then open a discussion on
the interest of this approach for future research into debugging and program comprehension. [10]

Time-Traveling Queries: Extensible Tools for Faster Program Comprehension
Debugging programs require program comprehension. To acquire this comprehension, developers

explore the program execution, a task often performed using interactive debuggers. However, exploring a
program execution through standard interactive debuggers is tedious and costly. In addition, standard
debuggers are generic tools that are inflexible and difficult to use in domain-specific contexts. We pro-
pose Time-Traveling Queries (TTQs) to ease and customize program exploration. TTQs is an extensible
mechanism that automatically explores program executions to collect execution data. This data is used
to time-travel through execution states, facilitating the exploration of program executions. Queries can
be created or extended for problem-specific or domain-specific debugging scenarios. TTQ have been
successfully used on a real-world example of a bug, which shows that in practice the TTQ system is usable.
To evaluate more in depth the impact of TTQs on program comprehension activities, we conducted a user
study with 34 participants on program comprehension tasks. Results show that compared to traditional
debugging tools, TTQs improve developers’ precision (39% more correct answers) while reducing re-
quired time (27% faster to finish tasks) and effort (45% less debugging actions) when performing program
comprehension tasks. [3]

Modular and Extensible Extract Method

18 Inria Annual Report 2024

Extract method refactoring is one of the most important refactorings in any refactoring engine be-
cause it supports developers to create new methods out of existing ones. Its importance comes with
the cost of complexity since it needs to take care of many issues to produce code that is syntactically
and semantically correct. Finally, their complexity often leads existing extract method refactoring to be
defined in a monolithic way. Such an implementation hampers any reuse of analyses and forbids simple
variations in the case of domain-specific refactorings based on extract method general idea. In this article,
after describing the challenges of the analysis of Extract Method refactoring in the context of Pharo, we
describe a new modular implementation. This implementation is based on the composition of element-
ary transformations. We validate this approach showing how it supports the natural definition of two
domain-specific refactorings: Extract SetUp refactoring (for SUnit) and Extract with Pragma refactoring
(for the Slang framework). [18]

A New Architecture Reconciling Refactorings and Transformations
Refactorings are behavior-preserving code transformations. They are a recommended software devel-

opment practice and are now a standard feature in modern IDEs. There are however many situations
where developers need to perform mere transformations (non-behavior-preserving) or to mix refactor-
ings and transformations. Little work exists on the analysis of transformations implementation, how
refactorings could be composed of smaller, reusable, parts (simple transformations or other refactorings),
and, conversely, how transformations could be reused in isolation or to compose new refactorings. In
a previous article, we started to analyze the seminal implementation of refactorings as proposed in
the PhD of D. Roberts, and whose evolution is available in the Pharo IDE. We identified a dichotomy
between the class hierarchy of refactorings (56 classes) and that of transformations (70 classes). We also
noted that there are different kinds of preconditions for different purposes (applicability preconditions or
behavior-preserving preconditions). In this article, we go further by proposing a new architecture that:
(i) supports two important scenarios (interactive use or scripting, i.e., batch use); (ii) defines a clear API
unifying refactorings and transformations; (iii) expresses refactorings as decorators over transformations,
and; (iv) formalizes the uses of the different kinds of preconditions, thus supporting better user feedback.
We are in the process of migrating the existing Pharo refactorings to this new architecture. Current results
show that elementary transformations such as the Add Method transformation is reused in 24 refactorings
and 11 other transformations; and the Remove Method transformation is reused in 11 refactorings and 7
other transformations. [7]

Modest-Pharo: Unit Test Generation for Pharo Based on Traces and Metamodels
Unit testing is essential in software development to ensure code functionality and prevent the intro-

duction of bugs. However, challenges such as time constraints and insufficient resource allocation often
impede comprehensive testing efforts, leaving software systems vulnerable to regression. To address this
issue, we introduce Modest, a language-agnostic approach to unit test generation that uses metamodels
and execution traces. This method ensures non-regression by replaying scenarios captured from real-
world executions. We demonstrate the application of Modest to Pharo codebases by generating unit tests
for two projects. [13]

8.3 A Generative Approach to Modular and Versatile Virtual Machines

Participants: Sebastian Jordan Montaño, Guillermo Polito, Stéphane Ducasse,
Pablo Tesone.

Evaluating Finalization-Based Object Lifetime Profiling
Using object lifetime information enables performance improvement through memory optimizations

such as pretenuring and tuning garbage collector parameters. However, profiling object lifetimes is non-
trivial and often requires a specialized virtual machine to instrument object allocations and dereferences.
Alternative lifetime profiling could be done with less implementation effort using available finalization
mechanisms such as weak references. We study the impact of finalization on object lifetime profiling.

Project EVREF 19

We built an actionable lifetime profiler using the ephemeron finalization mechanism named FiLiP. FiLiP
instruments object allocations to exactly record an object’s allocation time and it attaches an ephemeron
to each allocated object to capture its finalization time. We show that FiLiP can be used in practice and
achieves a significant overhead reduction by pretenuring the ephemeron objects. We further experiment
with the impact of sampling allocations, showing that sampling reduces profiling overhead while main-
taining actionable lifetime measurements. [15]

8.4 Crosscutting all Axis / Support

Participants: Sebastian Jordan Montaño, Guillermo Polito, Stéphane Ducasse,
Pablo Tesone, Aless Hosry, Nicolas Anquetil, Steven Costiou.

MethodProxies: A Safe and Fast Message-Passing Control Library
The injection of monitoring code allows for real-time observation of the program, which has proven

instrumental in developing tools that assist developers with various programming tasks. In dynamic
languages such as Pharo, renowned for their rich meta-programming capabilities and dynamic method
dispatch, such monitoring capabilities are particularly valuable. Message-passing control techniques are
commonly used to monitor program execution at the method level, involving the execution of specific
code before and after each method invocation. Implementing message-passing control techniques,
however, poses many challenges, notably in terms of instrumentation overhead. Additionally, it is crucial
for the message-passing mechanism to be safe: i.e., to accommodate recursive and reflective scenarios
to ensure that it does not alter the execution of the monitored program, which could potentially lead to
infinite loops or other unintended consequences.

Over the years, numerous techniques have been proposed to optimize message-passing control.
We introduce MethodProxies, a message-passing instrumentation library that offers minimal overhead
and is safe. We conduct a comparison between MethodProxies and two commonly used techniques
implemented in the Pharo programming language: method substitution using the run:with:in:hook
and source code modification. Our results demonstrate that MethodProxies offers significantly lower
overhead compared to the other two techniques and is safe against infinite recursion. [16]

MoTion: A New Declarative Object Matching Approach in Pharo
Pattern matching is an expressive way of matching data and extracting pieces of information from it.

The recent inclusion of pattern matching in the Java and Python languages highlights that such a facility
is more and more adopted by developers for everyday development. Other main stream programming
languages also offer pattern matching capabilities as part of the language (Rust, Scala, Haskell, and
OCaml), with different degrees of expressivity in what can be matched. In the meantime, in graphs,
pattern matching takes a slightly different turn; it enhances the expressivity of the patterns that can be
defined. Smalltalk currently offers little pattern matching capability to find specific objects inside a large
graph of objects using a declarative pattern. In Pharo, the closest library to classical pattern matching
that exists is the RBParseTreeSearcher, which allows to express specialized patterns over a Pharo Abstract
Syntax Tree to find some inner node. The question arises of what features a flexible pattern matching
language should have. We review the features found in different existing pattern matching languages,
both in General Purpose Languages (like Java) and in declarative graph pattern matching languages. We
then describe MoTion, a new pattern matching engine for Pharo smalltalk, combining all these features.
We discuss some aspects of MoTion’s implementation and illustrate its use with real case examples. [4]

Live Application Programming in the Defense Industry with the Molecule Component Framework
At Thales Defense Mission Systems (DMS), software products first go through an industrial prototyp-

ing phase. Prototypes are serious applications that we evaluate with our end-users during demonstrations.
End-users have a central role in the design process of our products. They often ask for software modifica-
tions during demonstrations to experiment new ideas or to focus the existing design on their needs. We
present how we combined Smalltalk’s live-programming capabilities with software component models to

20 Inria Annual Report 2024

obtain flexible and modular software designs in our context of live prototyping. We present Molecule, an
open-source implementation of the Lightweight CORBA Component Model in Pharo. We use Molecule
to build HMI systems prototypes, and we benefit from the dynamic run-time modification capabilities
of Pharo during demonstrations with our end-users where we explore software designs in a lively way.
Molecule is an industrial contribution to Smalltalk, as it capitalizes 20 years of usage and maturation in
our prototyping activity. The Molecule framework and tools are now mature, and we started building
end-user software used in production at Thales DMS. We present two such end-user software and analyze
their component architecture, that are representative of how we (learnt to) build HMI prototypes. Finally,
we analyze our technological decisions with regards to the benefits we sought for our industrial activity. [5]

On the Use of Statistical Machine Translation for Suggesting Variable Names for Decompiled Code:
The Pharo Case

Adequately selecting variable names is a difficult activity for practitioners. In 2018, Jaffe et al. proposed
the use of statistical machine translation (SMT) to suggest descriptive variable names for decompiled
code. A large corpus of decompiled C code was used to train the SMT model. We present the results of
a partial replication of Jaffe’s experiment. We apply the same technique and methodology to a dataset
made of code written in the Pharo programming language. We selected Pharo since its syntax is simple
- it fits on half of a postcard - and because the optimizations performed by the compiler are limited to
method scope. Our results indicate that SMT may recover between 8.9% and 69.88% of the variable
names depending on the training set. Our replication concludes that: (i) the accuracy depends on the
code similarity between the training and testing sets; (ii) the simplicity of the Pharo syntax and the
satisfactory decompiled code alignment have a positive impact on predicting variable names; and (iii) a
relatively small code corpus is sufficient to train the SMT model, which shows the applicability of the
approach to less popular programming languages. Additionally, to assess SMT’s potential in improving
original variable names, ten Pharo developers reviewed 400 SMT name suggestions, with four reviews
per variable. Only 15 suggestions (3.75%) were unanimously viewed as improvements, while 45 (11.25%)
were perceived as improvements by at least two reviewers, highlighting SMT’s limitations in providing
suitable alternatives. [6]

Ergonomic Evaluations of Human-Machine Interfaces in the Defense Business: An Example of a
Collaborative Maritime Surveillance System

Chez Thales Defense Mission System, nous impliquons les utilisateurs finaux dans la conception
des systèmes logiciels, en particulier lors d’évaluations de prototypes d’Interfaces Humain-Machine.
Dans les métiers de la défense, les utilisateurs finaux disposent de peu de disponibilités pour participer
à ces évaluations. Leurs visites sont concentrées sur quelques jours et espacées de plusieurs mois ou
années. Pour maximiser les retours, nous organisons des sessions d’évaluations ergonomiques sur des
scénarios longs et complexes pour confronter nos IHM à un panorama exhaustif des situations que les
utilisateurs peuvent rencontrer lors de leurs missions. Ces évaluations se déroulant sur des prototypes, il
arrive que des évènements imprévus perturbent le déroulement des scénarios exécutés, par exemple des
erreurs logicielles. Dans cet article, nous décrivons notre approche pour faire évoluer dynamiquement
nos prototypes en cours d’évaluation et bénéficier au maximum de la présence de nos utilisateurs finaux
sans interrompre les scénarios joués. [14]

8.5 Pharo for Live Coding Music

Participants: Domenico Cipriani, Sebastian Jordan Montaño, Nahuel Palumbo,
Stéphane Ducasse.

PHAUSTO: Embedding the Faust Compiler in the Pharo World
Phausto is a lightweight, open-source library for live-coding music, enabling sound generation and

Digital Signal Processing (DSP) programming. Developed in the Pharo programming language, it incor-
porates the Faust compiler for robust audio capabilities, using Foreign Function Interface (FFI) calls for
seamless integration. Phausto connects with platform-specific audio layers through PortAudio, offering a
consistent API across operating systems. Designed for educational settings, it targets users interested in

Project EVREF 21

DSP, musicians, and sound artists with limited technical skills. Phausto addresses two main challenges:
generating audio in Pharo applications and providing an accessible environment for programming digital
musical instruments. It is easy to install and supports the latest Pharo versions, with instructions available
on its GitHub repository. [11]

Phausto: Fast and Accessible DSP Programming for Sound and Music Creation in Pharo
We introduce Phausto, a library that generates sounds in Pharo programming language using Faust

(Functional Audio Streams), a programming language designed to develop real-time digital signal pro-
cessors (DSP).

In Phausto, DSP programs are created by the composition of Unit Generators written in a MUSIC-N
style, like the ChucK programming language, or from a string containing a valid Faust program.

We present Phausto’s API, implementation details and an overview of its syntax, and of Unit Generators
and ToolKit elements. We also analyze the motivations behind the project and identify its target audiences.
Finally, we present the conclusions drawn after one year of development and use, and outline the agenda
for future work. [12]

9 Bilateral contracts and grants with industry

9.1 Berger Levrault, France

Berger-Levrault is an international software publisher headquartered in France.
EVREF is a shared team with Berger-Levrault. This includes work on software architecture, test

generation, and remodularization. The collaboration started 8 years ago and resulted in two finished phd
theses and three ongoing ones. We organize 3 workshops and training sessions annually where we share
work and advancements in research. Berger-Levrault is now an active contributor to the Moose software
analysis platform.

Participants: Christophe Bortolaso, Nicolas Anquetil, Stéphane Ducasse, Anne Etien,
Nicolas Hlad, Anas Shatnawi, Benoît Verhaeghe.

9.2 Thales DMS, Brest, France: Graphics

Thales Defence Mission Systems (Tales DMS) is the European leader and ranks third worldwide in the
market for airborne and naval defence mission systems and equipment. Thales uses Pharo for prototyping
and internal products. See the Support Wizard by Thales for an example.

With the Pharo Consortium, from 2023. Industrial R&D collaboration with Dr. Eric Le Pors, lead
prototyping architect at Thales DMS, Brest. We work on the Pharo core graphics library.

Participants: Pablo Tesone, Stéphane Ducasse.

9.3 Thales DMS, Brest, France: Debugging

Industrial R&D collaboration with Dr. Eric Le Pors, lead prototyping architect at Thales DMS, Brest. We
work on 1) unanticipated object-centric debugging of HMI prototypes 2) we study the practices of Thales
with software component reuse and its impact on their development process. From 2020, ongoing.

Participants: Steven Costiou.

https://www.berger-levrault.com
https://www.thalesgroup.com
https://www.pharo.org/success/Thales-SupportWizard.html

22 Inria Annual Report 2024

9.4 Pharo Consortium

The Pharo Consortium was founded in 2012 and is growing constantly. consortium.pharo.org (From 2012,
ongoing.)

Participants: Pablo Tesone, Stéphane Ducasse, Esteban Lorenzano, Marcus Denker.

9.5 Lifeware AG, Switzerland

Lifeware is a complete, fully integrated, web based solution for the management of life insurance products.
In collaboration with the Pharo Consortium, we improve Pharo. The goal is to be able to work with

very large systems (>100K classes).

Participants: Pablo Tesone, Stéphane Ducasse, Esteban Lorenzano, Marcus Denker.

9.6 Dedalus

Dedalus is a global leader in Health Software. One product is a a patient dossier for oncologists.
A collaboration started in 2021. It included a 6 month engineer position. The goals are (1) The

development of a software prototype for the identification of unused functionalities within an application.
(2) Analysis of the source code of the software using the open-source software platform Moose. (3)
Identification of a CIFRE thesis subject on software maintenance and development.

Romain Degrave did his second internship (M2) in 2024. He migrated their home made web-service
infrastructure to GWT. 600 services where automatically migrated using Moose and our software analysis
tools.

Participants: Nicolas Anquetil, Stéphane Ducasse, Soufyane Labsari, Anne Etien,
Romain Degrave.

9.7 CIFRE Framatome, Courbevoie, France

Framatome is an international leader in nuclear energy.
Industrial R&D collaboration on migrating a proprietary programming language to Fortran 2003 using

meta-modelisation

Participants: Nicolas Anquetil, Stéphane Ducasse, Larisa Safina, Younoussa Sow.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Inria associate team not involved in an IIL or an international program

SADPC

Title: Systems Analyses and Debugging for Program Comprehension

Duration: 2020 -> 2024

Coordinator: Yann-Gaël Guéhéneuc (yann-gael.gueheneuc@concordia.ca)

http://consortium.pharo.org
https://www.lifeware.ch/
https://www.dedalus.com
https://www.framatome.com

Project EVREF 23

Partners:

• Concordia University Montréal (Canada)

Inria contact: Stéphane Ducasse

Summary: Systemic changes in the past decades have pushed software systems into all aspects of our
lives, from our homes to our cars to our factories. These systems, both legacy (e.g., handling
contracts for the Dept of Defense of the USA since 1958) and very recent (e.g., running the latest
smart factory in France in 2019), are difficult to understand by software engineers because of their
intrinsic complexity. These engineers need help understanding the systems they must adapt to the
new requirements of our time. The proposed associate team considers three research directions
to support the software engineers maintaining and evolving large software systems: (a) system
analyses and (b) debugging for (c) program comprehension. (a) Complex algorithms often act
or are perceived by software engineers as black boxes because of their intrinsic and accidental
complexity, both in architecture, design, and implementation. We will develop new software
analyses to support algorithm understanding. (b) Previous debugging techniques assume a unique
software engineer performing a solitary debugging session. We will work on a language allowing
software engineers to build their own debuggers to fit their collaborative debugging strategies. (c)
Previous work on program comprehension proposed views to address one single problem at a given
moment of the comprehension process. They only provide a subset of the information required by
software engineers. We want to propose an approach to adapt and combine views using meta-data.

10.2 International research visitors

10.2.1 Visits of international scientists

Other international visits to the team

Ghizlane El Boussaidi

Status: Researcher

Institution of origin: ETS MONTREAL

Country: Canada

Dates: September 2024 to December 2024

Context of the visit: Associated team SADP

Mobility program/type of mobility: sabbatical

Balša Šarenac

Status: PhD Student

Institution of origin: University of Novi Sad

Country: Serbia

Dates: 5/2-16/02, 8/04-13/04, 02/07-12/07, 01/10-16/10

Context of the visit: Refactoring engine

Mobility program/type of mobility: research stay

24 Inria Annual Report 2024

Domenico Cipriani

Status: Independent Researcher and Musician

Institution of origin: Private

Country: Italy

Dates: 10/04 to 13/04, 14/10 to 17/10 and ESUG 8/07 to 13/07

Context of the visit: Pharo for Music

Mobility program/type of mobility: research stay

10.2.2 Visits to international teams

Research stays abroad

Guillermo Polito

Visited institution: Luxembourg Institute of Science and Technology (LIST)

Country: Luxembourg

Dates: 12-13 June 2024

Context of the visit: Visit to the software engineering team of LIST, discussions on automated testing,
fuzzing and mutation

Mobility program/type of mobility: Exchange and discussion

Visited institution: Vrije Universiteit Brussel

Country: Belgium

Dates: 14 June 2024

Context of the visit: Visit to the Programming language team of LIST, discussions on debugging and
instrumentation

Mobility program/type of mobility: Exchange and discussion

Valentin Bourcier

Visited institution: University of Zurich

Country: Switzerland

Dates: Aug 2024, two weeks

Context of the visit: empirical experiment and writing, FSE research paper submission

Mobility program/type of mobility: Exchange and discussion

10.3 European initiatives

10.3.1 H2020 projects

EVREF was part of the COST project CERCIRAS: Connecting Education and Research Communities
for an Innovative Resource Aware Society. From 29/09/2020 to the end of the project 28/09/2024 (see
www.cost.eu/actions/CA19135).

http://www.cost.eu/actions/CA19135

Project EVREF 25

10.3.2 Other european programs/initiatives

University of Novi Sad, Serbia

Participants: Anne Etien, Nicolas Anquetil, Balša Šarenac, Stéphane Ducasse.

We collaborate with two groups of the University of Novi Sad (G. Rakic and G. Milosavljevic) on
improving the Refacoring features of Pharo.

In 2024, Balša Šarenac visited four times. We published two papers: [7], [18].

University of Zurich, Switzerland

Participants: Steven Costiou, Stéphane Ducasse, Valentin Bourcier.

We collaborate since 2020 with Alberto Bacchelli from the Zurich Empirical Software Engineering
Team (ZEST) on large-scale evaluations of debugging tools. This collaboration involves 3 researchers and
2 PhD students.

In 2024, Valentin Bourcier visited ZEST to prepare a submission for The ACM International Conference
on the Foundations of Software Engineering (FSE).

Pharo for Live Coding Music

Partners: Dominico Cipriani, EVREF, MINT, GRAME, Pharo Association

Participants: Dominico Cipriani, Nahuel Palumbo, Sebastian Jordan Montaño,
Stéphane Ducasse, Marcus Denker, Stéphane Sletz, Florent Berthaut,
Enzo Demeulenaere, Redwane Engels, Alexis Cnockaert.

With Dominico Cipriani (Italy) we are exploring how to create a live music coding envrionment with
Pharo.

We embedded the Faust Language in with Pharo (with Stéphane Sletz of GRAME Lyon). We developed
better abstractions to support live coding and musical shows. The work on user interaction was done in
collaboration with Florent Berthaut of the Cristal MINT Team.

Dominico Cipriani visited the team in 2024 three times. Notable results:

• Workshop Music with Domenico Cipriano - Lille - 15 November 2024

• Concert the 17th October at the Maison des Etudiants using Pharo

• Dominico Cipriani joined an improvisation session of Muzzix 14/10 using Pharo as his instrument

• We published two papers: [12], [11]

• Experimental Audio-Visual Live Coding Performance at ESUG 2024: Riding the MOOFLOD (see
video)

• Dominico Cipriani performed together with The Analogue Cops at the first Algorave at Ohm Berlin,
using Pharo to compose live music on MIDI synthesiser

• Dominico Cipriani performed at System Shangai for the International Live Coding Conference
2024, using Pharo to compose music with Kyma and control visuals made with Processing

https://muzzix.info
https://www.youtube.com/watch?v=8s3wypwqzSc

26 Inria Annual Report 2024

10.4 National initiatives

SWHSec: Leveraging Software Heritage to Enhance Cybersecurity
Partners: EVREF, Software Heritage (From 2023 to 2025).

Participants: Cyril Ferlicot-Delbecque, Stéphane Ducasse, Imen Sayar, Anne Etien,
Nicolas Anquetil.

The rise of Open Source has accelerated innovation by allowing massive reuse of a huge number of
freely available software components developed by a vast community distributed around the world. This
has had serious consequences on the software supply chain, with the introduction of a large number
of dependencies on components whose quality level is difficult to assess and control: they can contain
vulnerabilities, and become sources of attacks on the systems that depend on them, as we saw with the
Log4J incident. Recent examples of deliberately sabotaged software in response to the invasion of Ukraine
have shown how the line between well-intentioned and malicious actors in the software development
world is becoming increasingly blurred.

The urgency of addressing these issues is now clearly perceived, as seen for example in the May 2021
White House Executive Order, which explicitly mentions the need to "ensure and attest, to the extent
possible, the integrity and provenance of open source software."

To meet this imperative, it is necessary to be able to analyze the millions of publicly available software
projects, study their development history, and extract relevant information.

We are fortunate to have the Software Heritage archive, an initiative launched about 6 years ago by
Inria in partnership with UNESCO, which already contains more than 12 billion unique source files from
more than 180 million different origins, with all their development history.

This project brings together a group of research teams with significant expertise in software source
code analysis to leverage the unprecedented resource that is the Software Heritage archive and explore
the possibilities it opens up in terms of cybersecurity. New features needed to enrich the archive with
security-relevant information such as component dependencies and links to known vulnerabilities will
be developed, used to trace the origin and impact of vulnerabilities, and automatic detection and remedi-
ation from the patterns thus detected will be explored.
These developments will provide the basis for making Software Heritage effectively usable in industrial
and cyber defense applications.

ANR JCJC Sapper
Partners: EVREF, Sigma, UQAM (Quebec) (From 2023 to 2027).

Participants: Guillermo Polito, Pablo Tesone, Jean Privat, Rémi Bardenet.

In Sapper we propose a holistic approach to reduce the cost of benchmarking. Namely, we will study
how to build relevant, reproducible, and interpretable benchmark programs. We will automate the gener-
ation, selection, execution and interpretation of benchmarks by reuniting fundamental, practical, and
empirical knowledge from programming language implementation, software engineering, and statistics.

ARCAD‚ Lab-STICC, Brest, France

Participants: Guillermo Polito, Pablo Tesone, Stéphane Ducasse.

We collaborate since the beginning of 2021 with the ARCAD team of the Lab-STICC in Bretagne (Prof
L. Lagadec). We started at the beginning of the year with a common workshop between the two teams

Project EVREF 27

looking for collaboration points. G. Polito and P. Tesone are now collaborating with the PhD of Q. Ducasse
on Just-In-Time compiler technology for extensible ISA processors such as RISC-V.

École Nationale d’Ingénieurs de Tarbes

Participants: Marcus Denker.

With Cédrick Béler (ENIT/LGP/ICE) we are exploring the life-cycle (contextual time relation) of data,
information, and knowledge in the context of Object-Oriented data models.

ANR JCJC OCRE
Partners: EVREF, SmArtSE (UCAQ, Quebec), UX Prototyping (Thales DMS, Brest) (From 2022 to 2024).

Participants: Steven Costiou, Valentin Bourcier, Marcus Denker.

The objectives of the OCRE project are to study the fundamental and practical limits that hinder the
implementation, the evaluation, and the adoption of object-centric debugging. We propose to build the
first generation of object-centric debuggers, in order to identify and evaluate its real benefits to OOP
debugging. We argue that these debuggers have the potential to drastically lower the cost (time and effort)
of tracking and understanding hard bugs in OOP.

Action Exploratoire Inria: AlaMVic

Participants: Guillermo Polito, Pablo Tesone, Nahuel Palumbo.

Language Virtual Machines (VMs) are pervasive in every laptop, server, and smartphone. Industry-
level VMs use highly-engineered optimization techniques, often handcrafted by experts, difficult to
reproduce, replicate and change. Such optimization techniques target mostly speed improvements and
are incompatible with constraints such as space and energy efficiency important in the fields of IoT or
robotics. In AlaMVic1 we propose to approach VM construction using a holistic generative approach,
in contrast with existing approaches that focus on speed and single VM components such as the JIT
compiler. We explore how to transform handcrafted optimizations into generation heuristics, how they
are applied and combined in fields such as IoT and robotics, and new methods and metrics to evaluate
VMs in such fields.

ANR Profil
Partners: EVREF, Université Côte d’Azur, Centre Inria de l’Université Côte d’Azur

Participants: Anne Etien, Clotilde Toullec, Florent Jaillet, Frederic Precioso,
Imen Sayar, Michel Riveill, Mireille Blay-Fornarino, Nicolas Anquetil,
Philippe Collet, Stéphane Ducasse.

La communauté du ML fait face à des défis majeurs dans la construction industrialisée de workflows
réutilisables : la caractérisation de workflows de ML noyés dans les codes, leur opérationnalisation, leur
reproduction, et enfin leur réutilisation par des tiers. Répondre à ces défis revêt une importance cruciale
pour capitaliser sur les efforts considérables dans tous les domaines qui exploitent et développent des

28 Inria Annual Report 2024

workflows de ML. Il doit être possible de vérifier et valider la justesse de ces workflows produits en masse.
Ceci permettra l’agrégation et la factorisation des pratiques pertinentes, et plus largement la maîtrise de
la maintenance des systèmes intégrant ces modèles. Dans ce projet, nous adoptons une approche de
génie logiciel (GL) pour aborder cette problématique en proposant de lier ingénierie des modèles (IDM)
(au sens GL), analyse statique et statistique pour caractériser ces workflows de ML par des modèles (aussi
au sens GL).

10.5 Regional initiatives

IMT Douai

Participants: Pablo Tesone, Marcus Denker, Stéphane Ducasse.

We have an ongoing close collaboration with Prof L. Fabresse around Pharo.
In the past this included both improving the language (Pharo Bootrap) as well as applications for

example in IoT (PharoIoT) and Robotics (PhaROS).
The PhDs of P. Tesone, P. Misse, C. Hernandez and F. Rayane were joint projects with the team of IMT

Douai.

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

• The International European Smalltalk Usergroup Conference 2024 (ESUG), Lille, France (124 PP, 4
Days)

• International Workshop on Smalltalk Technologies (IWST) 2024 (as part of ESUG).

• co-organized the nation GT DevX launch day at Rennes, December 4th (Steven Costiou, Valentin Bourcier).

General chair, scientific chair

• Stéphane Ducasse: ESUG 2024 Lille

Conference Steering Committee Member

• Larisa Safina: 17th Interaction and Concurrency Experience (ICE) workshop co-located with 18th
International Federated Conference on Distributed Computing Techniques (DisCoTec)

Member of the organizing committees

• Guillermo Polito: International Workshop on Smalltalk Technologies (IWST) 2024

• Steven Costiou: International Workshop on Smalltalk Technologies (IWST) 2024

• Steven Costiou : Organisateur et Session Chair des sessions du GT Debugging, Journées Nationales
du GDR-GPL 2023

• Steven Costiou : ESUG 2024 Lille: was part of organization and was responsible for student volun-
teers

• Marcus Denker: ESUG 2024 (Local Organizer and member of the ESUG board)

• Stéphane Ducasse: ESUG 2024 (Local Organizer and member of the ESUG board)

• Pablo Tesone: ESUG 2024 (Local Organizer and member of the ESUG board)

Project EVREF 29

11.1.2 Scientific events: selection

Member of the conference program committees

• Anne Etien: IEEE Working Conference on Software Visualization (VISSOFT) 2024

• Anne Etien: 23rd Belgium-Netherlands Software Evolution Workshop 2024 (BENEVOL)

• Anne Etien: IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER) ERA track, 2025

• Anne Etien: International Conference on Program Comprehension (ICPC) 2025

• Steven Costiou: Second Workshop on Future Debugging Techniques (DEBT) 2024

• Steven Costiou IEEE Working Conference on Software Visualization (VISSOFT) 2024

• Marcus Denker: RAW 2024 3rd workshop on Resource Awareness of Systems and Society

• Larisa Safina: 44th International Conference on Formal Techniques for Distributed Objects, Com-
ponents, and Systems (FORTE)

• Larisa Safina: 5nd IEEE International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS)

• Larisa Safina: 1st International Workshop on Choreographic Programming (CP 2024) co-located
with 45rd ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI)

• Larisa Safina: 22nd International Conference on Service-Oriented Computing (ICSOC)

• Larisa Safina: International Workshop on Smalltalk Technologies (IWST) 2024

• Larisa Safina: Extended Review Committee and External Reviewers European Conference on
Object-Oriented Programming (ECOOP)

• Larisa Safina: Artifact Evaluation Committee Member European Conference on Object-Oriented
Programming (ECOOP)

Reviewer

• Steven Costiou: IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER) 2024

• Marcus Denker: International Conference on Software Maintenance and Evolution (ICSME) 2024

• Stéphane Ducasse: International Conference on Software Reuse ICSR

11.1.3 Journal

Member of the editorial boards

• Larisa Safina: Journal Guest Editor, Special Issue of the Journal of Logical and Algebraic Methods in
Programming

Reviewer - reviewing activities

• Marcus Denker: Elsevier Journal of Computer Languages COLA

• Marcus Denker: Journal Computer Science and Information Systems COMSIS

• Larisa Safina: Springer Nature Computational Science Nat. Comput. Sci.

• Guillermo Polito: Journal Computer Science and Information Systems COMSIS

• Guillermo Polito: ACM Transactions on Software Engineering and Methodology TOSEM

https://www.sciencedirect.com/journal/journal-of-computer-languages
http://www.comsis.org/
https://www.nature.com/natcomputsci
http://www.comsis.org/
https://dl.acm.org/journal/tosem

30 Inria Annual Report 2024

11.1.4 Invited talks

HCERES evaluation of CRIStAL:

• Sebastian Jordan Montaño: Memory Profiling in Pharo

• Gabriel Darbord: Automatic Test Generation

• Guillermo Polito: Interpreter-guided JIT Compiler Unit Testing

11.1.5 Leadership within the scientific community

• Stéphane Ducasse: overall Leadership of the Pharo Project.

• Steven Costiou is leader of the GT Debugging working group of the CNRS GDR GPL. This working
group aims to gather any researcher, engineer or GDR team interested in software debugging
problems. (from 2020) GDR GPL

• Steven Costiou and Valentin Bourcier are working with Benoît Combemale from the DIVERSE team,
INRIA Rennes, to define a new GDR GPL working group on developer experience, the DevX. This
workgroup will replace the former debugging workgroup. And by broadening the topic, we expect
to gather more participants in the group, from several disciplines, in order to have open discussions
on the scientific problems related to the developers’ needs and possible solutions. (from June 2024)
GDR GPL

• Steven Costiou: Program Committee member Prix de thèse du GDR-GPL 2024

• Larisa Safina: Ethics Committee Member Microservices Community

11.1.6 Scientific expertise

• Anne Etien: Evaluation for Agence Nationale de la Recherche ANR

• Anne Etien: Evaluation for the Natural Sciences and Engineering Research Council of Canada NSERC

• Anne Etien: Evaluation for Association Nationale de la Recherche et de la Technologie ANRT

11.1.7 Research administration

• Anne Etien animates the CRIStAL thematic group of Software Engineering.

• Anne Etien: Directrice des Études de la L3 MIAGE, Université de Lille

• Anne Etien: Elected as a Member of CNU (section 27).

• Anne Etien is elected member of the center committee of the Inria Lille center.

• Anne Etien is elected member of the Computer Science Department council of University of Lille

• Anne Etien is member of the Scientific council of CRIStAL

• Marcus Denker was a member of the AGOS board (Section culture) of Inria Lille till 2024

11.2 Teaching - Supervision - Juries

• Master: Stéphane Ducasse, Meta, Université de Lille, 12hTD

• Master: Stéphane Ducasse, Conception avancée, Université de Lille, 60hTD

• Master: Steven Costiou , Advanced Object Oriented Design, IMT Lille Douai, 30hCM

• Master: Steven Costiou , Conception et modélisation objet, Polytech Lille, 10hCM

http://pharo.org
https://gdr-gpl.cnrs.fr
https://gdr-gpl.cnrs.fr
https://www.microservices.community
https://anr.fr/
https://www.nserc-crsng.gc.ca
https://www.anrt.asso.fr/
https://www.cristal.univ-lille.fr

Project EVREF 31

• Master: Guillermo Polito, Analyse et Verification de Logiciel, Université de Lille, 32h CM

• Master: Guillermo Polito, Conception et Paradigmes de Programmations par la Pratique, Université
de Lille, 48hTD

• Licence: Guillermo Polito, Meta, Université de Lille, 13hTD

• Master: Gabriel Darbord, Conception avancée, Université de Lille, 18hTD

• Licence: Gabriel Darbord, JavaScript Full Stack, Université de Lille, 18hTD

• Master: Sebastian Jordan Montaño, Advanced Design, IMT Lille, 38hTD

• Master: Imen Sayar, Introduction à la Sécurité Informatique (ISI), Master 1, FST Université de Lille,
18h TD

• Licence: Imen Sayar, Génie logiciel (GL), L3, FST Université de Lille, 36h TD

• Licence: Imen Sayar, Programmation des systèmes (PDS), L3, FST Université de Lille, 18h TD

• Licence: Imen Sayar, Conception orientée objet (COO), L3, FST Université de Lille, 36 TD

• Licence: Imen Sayar, Projet, FST Université de Lille, L2, 48h TD

• Licence: Imen Sayar, Bases de données 1 (BDD1), L2, FST Université de Lille, 21h TD

• Licence: Imen Sayar, Bases de données 1 (BDD1), L2 info, L3 Info Math, L2 PEIP, Master 1, FST
Université de Lille, 6h CM

• Licence: Larisa Safina, Métaprogrammation, construction d’interpréteurs, Université de Lille, 24h
TD-TP

• Licence: Larisa Safina, Qualité de développement, Université de Lille, 12h TP

• Licence: Larisa Safina, Automatisation de la chaîne de production, Université de Lille, 9h TP

• Licence: Nicolas Anquetil, Maintenance applicative, 18, L3, IUT de Lille

• Licence: Cyril Ferlicot-Delbecque, Génie logiciel, 18hTD, L3, Université de Lille

• Master: Marcus Denker, 2 hours, Advanced Reflection, VUB Brussels, Belgium.

11.2.1 Supervision

• Finished PhD: Iona Thomas, Elements of Language Strenghtening, Stéphane Ducasse, Pablo Tesone,
Guillermo Polito. November 7th, 2024, [25]

• Finished PhD: Aless Hosry, Model transformations for automatic source code modification, Nic-
olas Anquetil. December 6, 2024, [24]

• PhD in progress: Gabriel Darbord, Automatic Test Generation, since october 2022, Inria through
the EPC with BL, Anne Etien, Nicolas Anquetil.

• PhD in progress: Valentin Bourcier, Reducing the cost of debugging with the first generation of
object-centric debuggers, since october 2022, Inria, Steven Costiou

• PhD in progress: Nahuel Palumbo, Virtual Machine Generation Techniques, since november 2022,
Inria, Stéphane Ducasse, Guillermo Polito.

• PhD in progress: Sebastian Jordan Montaño, Memory Profiling and Instrumentation, Inria + Région
HDF, started oct. 2023, Stéphane Ducasse, Guillermo Polito, Pablo Tesone.

• PhD in progress: Federico Lochbaum, Performance Test Generation, ANR JCJC, started nov. 2024,
Guillermo Polito.

32 Inria Annual Report 2024

• PhD in Progress: Soufyane Labsari, DSL et cartes scriptables pour la cartographie de systèmes
patrimoniaux, since December 2023, Inria, Anne Etien, Imen Sayar and Nicolas Anquetil

• PhD in progress: Rémi Dufloer, Echo Debugging, Inria + Région HDF, started oct. 2024, Imen Sayar,
Steven Costiou, Anne Etien.

• PhD in progress: Nour Ayachi, Le traçage des règles métier dans le code source, since November
2024, Inria through the EPC with BL, Anne Etien, Nicolas Anquetil.

• PhD in progress: Faouzi Rayane, Inria / IMT started oct. 2024, Stéphane Ducasse, L. Fabresse,
Pablo Tesone

• PhD in progress: Omar Abedelkader, Inria / Labri / Cirad started oct. 2024, Stéphane Ducasse, R.
Robbes, O. Zaitsev

Student interns

• Ikimath Adouke Adeoye supervised by Clotilde Toullec - Improving the Moose importer

• Quentin Moutte supervised by Stéphane Ducasse - Microdown

• Redwane Engels supervised by Florent Berthaut and Stéphane Ducasse - Recoring Scores

• Alexis Cnockaert supervised by Stéphane Ducasse - UI for Music

• Sarah Tathy supervised by Stéphane Ducasse and Hernan Federico Morales - Contact manager

• Angel Hely supervised by Cyril Ferlicot-Delbecque - Improving quality rules

• Renaud Fondeur supervised by Guillermo Polito - Improving the Slang transpiler

• Pol Durieux supervised by Guillermo Polito — Mutation testing

• Ignacio Esteban Losiggio supervised by Guillermo Polito — Table-based Polymorphic Inline Caches

11.2.2 Juries

• Anne Etien: Ali Benjilany, PhD "Une approche pour la modélisation et l’évaluation de l’état
d’alignement opérationnel entre processus métier et applicatifs logiciels", 19 décembre 2024,
Université de Nantes, as reviewer

• Anne Etien: Matthias Pasquier, PhD "Débogage multivers de spécifications non-déterministes", 19
décembre 2024, ENSTA Brest, as reviewer

• Anne Etien: Salman Fahrat, PhD "Reconfiguration dynamique sûre des applications comportant
des options fonctionnelles", 11 juillet 2024, Université de Lille, as president

• Anne Etien: Corentin Latappy, PhD "Les pratiques de code : de la documentation à la détection",
juin 2024, Université de Bordeaux, as reviewer

• Anne Etien: Yassine El Amraoui, PhD "Faciliter l’inclusion humaine dans le processus de science
des données : de la capture des exigences métier à la conception d’un workflow d’apprentissage
automatique opérationnel", mai 2024, Université Côte d’Azur, as reviewer

• Guillermo Polito: Quentin Ducasse, PhD "Hardware security for just-in-time compilation in lan-
guage virtual machines", 29 Mars 2024, ENSTA Bretagne, as invited

• Guillermo Polito: Javier Pimas, PhD "Objetos vivos a fondo: removiendo las barreras entre aplica-
ciones y máquinas virtuales", 12 September 2024, Universidad de Buenos Aires, as reviewer

Project EVREF 33

11.3 Popularization

11.3.1 Specific official responsibilities in science outreach structures

• Guillermo Polito is a member of the Argentinian Uqbar Foundation

• Guillermo Polito, Stéphane Ducasse and Marcus Denker are members of the Pharo Board

• Stéphane Ducasse, Marcus Denker, Pablo Tesone are members of the ESUG Board (European
Smalltalk Usergroup)

• Stéphane Ducasse, Marcus Denker, Pablo Tesone are members of the Board of the Pharo User
Association

• Sebastian Jordan Montaño organized the PhD GL students day in which the PhD students from
different teams (and engineers) gathered to present their research and to exchange

11.3.2 Productions (articles, videos, podcasts, serious games, ...)

• Release of the book Application building with Spec 2.0, Koen De Hondt and Stéphane Ducasse with
Esteban Lorenzano and Sebastian Jordan Montaño, ISBN 9782322478712 [23]

• Release of the book: Building a minimal reflective kernel Stéphane Ducasse, ISBN: 9782322506187
[22]

• The MOOC Advanced object oriented design and development with Pharo, originally realeased in
2023, is being run by fun-mooc (From Jun 17, 2024 to Jun 16, 2025). 1031 registerered articipants
fun-mooc.fr

11.3.3 Participation in Live events

Domenico Cipriani gave a concert the 17th October at the Maison des Etudiants using Pharo and joined
an improvisation session of Muzzix 14/10 using Pharo as his instrument.

11.3.4 Others science outreach relevant activities

• EVREF organizes Public Pharo Sprints every last Friday of the month. Reponsable: Marcus Denker

12 Scientific production

12.1 Major publications

[1] G. Polito, P. Tesone, J. Privat, N. Palumbo and S. Ducasse. ‘Heap Fuzzing: Automatic Garbage
Collection Testing with Expert-Guided Random Events’. In: ICST 2023 - International Conference
on Software Testing. Dublin, Ireland, 16th Apr. 2023. URL: https://inria.hal.science/hal-0
3962007.

12.2 Publications of the year

International journals

[2] V. Bourcier, S. Costiou, M. I. Willembrinck Santander, A. Vanègue and A. Etien. ‘Time-traveling
object-centric breakpoints’. In: Journal of Computer Languages (June 2024), p. 101285. DOI: 10.10
16/j.cola.2024.101285. URL: https://inria.hal.science/hal-04629161 (cit. on p. 17).

[3] V. Bourcier, M. Willembrinck, A. Vanègue, S. Ducasse, A. Etien and S. Costiou. ‘Time-Traveling
Queries: Extensible Tools for Faster Program Comprehension.’ In: The Journal of Object Technology
23.1 (2024), p. 1. DOI: 10.5381/jot.2024.23.1.a7. URL: https://inria.hal.science/hal-0
4841228. In press (cit. on p. 17).

https://www.fun-mooc.fr/en/courses/advanced-object-oriented-design-and-development-with-pharo/
https://muzzix.info
https://inria.hal.science/hal-03962007
https://inria.hal.science/hal-03962007
https://doi.org/10.1016/j.cola.2024.101285
https://doi.org/10.1016/j.cola.2024.101285
https://inria.hal.science/hal-04629161
https://doi.org/10.5381/jot.2024.23.1.a7
https://inria.hal.science/hal-04841228
https://inria.hal.science/hal-04841228

34 Inria Annual Report 2024

[4] A. Hosry, V. Aranega and N. Anquetil. ‘MoTion: A new declarative object matching approach in
Pharo’. In: Journal of Computer Languages 81 (4th Sept. 2024), p. 101290. DOI: 10.1016/j.cola.2
024.101290. URL: https://inria.hal.science/hal-04724509 (cit. on p. 19).

[5] P. Laborde, Y. Le Goff, É. Le Pors, A. Plantec and S. Costiou. ‘Live Application Programming in the
Defense Industry with the Molecule Component Framework’. In: Journal of Computer Languages
(June 2024), p. 101286. DOI: 10.1016/j.cola.2024.101286. URL: https://inria.hal.scienc
e/hal-04629166 (cit. on p. 20).

[6] J. P. Sandoval Alcocer, H. Camacho-Jaimes, G. Galindo-Gutierrez, A. Neyem, A. Bergel and S. Ducasse.
‘On the Use of Statistical Machine Translation for Suggesting Variable Names for Decompiled Code:
The Pharo Case’. In: Journal of Computer Languages (28th Apr. 2024). URL: https://inria.hal.s
cience/hal-04564690 (cit. on p. 20).

[7] B. Šarenac, N. Anquetil, S. Ducasse and P. Tesone. ‘A New Architecture Reconciling Refactorings
and Transformations’. In: Journal of Computer Languages (21st July 2024). DOI: 10.1016/j.cola
.2024.101273. URL: https://hal.science/hal-04576527 (cit. on pp. 18, 25).

[8] I. Thomas, S. Ducasse, P. Tesone and G. Polito. ‘Pharo: a reflective language -Analyzing the reflective
API and its internal dependencies’. In: Journal of Computer Languages 80 (2024), p. 101274. DOI:
10.1016/j.cola.2024.101274. URL: https://hal.science/hal-04576440 (cit. on p. 16).

International peer-reviewed conferences

[9] V. Bourcier, A. Bergel, A. Etien and S. Costiou. ‘Debugging Activity Blueprint’. In: The twelfth IEEE
Working Conference on Software Visualization (VISSOFT 2024). Pharo. Flagstaff (Arizona), United
States, 6th Oct. 2024. URL: https://hal.science/hal-04699796 (cit. on p. 17).

[10] V. Bourcier and S. Costiou. ‘Scopeo: an Object-Centric Debugging Approach for Exploring Object-
Oriented Programs’. In: 2024 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). Rovaniemi, Finland, 12th Mar. 2024. DOI: 10.1109/SANER60148.2024.0
0040. URL: https://inria.hal.science/hal-04627606 (cit. on p. 17).

[11] D. Cipriani, A. Anatrini and S. Jordan Montaño. ‘PHAUSTO: EMBEDDING THE FAUST COMPILER
IN THE PHARO WORLD’. In: Proceedings of the 4th International Faust Conference. 4th International
Faust Conference (IFC 2024). Turin, Italy, 21st Nov. 2024. URL: https://hal.science/hal-0483
7510 (cit. on pp. 21, 25).

[12] D. Cipriani, N. Palumbo, S. J. Montaño and S. Ducasse. ‘Phausto: fast and accessible DSP program-
ming for sound and music creation in Pharo’. In: IWST 2024: International Workshop on Smalltalk
Technologies. Lille, France, 9th July 2024. URL: https://hal.science/hal-04826894 (cit. on
pp. 21, 25).

[13] G. Darbord, F. Vandewaeter, A. Etien, N. Anquetil and B. Verhaeghe. ‘Modest-Pharo: Unit Test
Generation for Pharo Based on Traces and Metamodels’. In: IWST 2024: International Workshop on
Smalltalk Technologies. Lille, France, 9th July 2024. URL: https://hal.science/hal-04622256
(cit. on p. 18).

[14] P. Laborde, É. Le Pors, Y. Le Goff, A. Plantec and S. Costiou. ‘Ergonomic evaluations of Human-
Machine Interfaces in the defense business: an example of a collaborative Maritime Surveillance
system’. In: IHM’24 - 35e Conférence Internationale Francophone sur l’Interaction Humain-
Machine. Vol. IHM’24 : Actes étendus de la 35ème conférence Francophone sur l’Interaction
Humain-Machine. Paris, France, 25th Mar. 2024. URL: https://hal.science/hal-04498410
(cit. on p. 20).

[15] S. J. Montaño, G. Polito, S. Ducasse and P. Tesone. ‘Evaluating Finalization-Based Object Lifetime
Profiling’. In: International Symposium on Memory Management. Copenhagen, Denmark, 2024.
DOI: 10.1145/3652024.3665514. URL: https://hal.science/hal-04581342 (cit. on p. 19).

[16] S. J. Montaño, J. P. Sandoval Alcocer, G. Polito, S. Ducasse and P. Tesone. ‘MethodProxies: A Safe
and Fast Message-Passing Control Library’. In: IWST 2024: International Workshop on Smalltalk
Technologies, July 8-11, 2024, Lille, France. Lille, France, 8th July 2024. URL: https://hal.scienc
e/hal-04708729 (cit. on p. 19).

https://doi.org/10.1016/j.cola.2024.101290
https://doi.org/10.1016/j.cola.2024.101290
https://inria.hal.science/hal-04724509
https://doi.org/10.1016/j.cola.2024.101286
https://inria.hal.science/hal-04629166
https://inria.hal.science/hal-04629166
https://inria.hal.science/hal-04564690
https://inria.hal.science/hal-04564690
https://doi.org/10.1016/j.cola.2024.101273
https://doi.org/10.1016/j.cola.2024.101273
https://hal.science/hal-04576527
https://doi.org/10.1016/j.cola.2024.101274
https://hal.science/hal-04576440
https://hal.science/hal-04699796
https://doi.org/10.1109/SANER60148.2024.00040
https://doi.org/10.1109/SANER60148.2024.00040
https://inria.hal.science/hal-04627606
https://hal.science/hal-04837510
https://hal.science/hal-04837510
https://hal.science/hal-04826894
https://hal.science/hal-04622256
https://hal.science/hal-04498410
https://doi.org/10.1145/3652024.3665514
https://hal.science/hal-04581342
https://hal.science/hal-04708729
https://hal.science/hal-04708729

Project EVREF 35

[17] T. Nguyen, S. Ebersold, I. Sayar and J.-M. Bruel. ‘Identifying and fixing ambiguities in, and semantic-
ally accurate formalisation of, behavioural requirements’. In: Software and Systems Modeling. 27 th
International Conference on Model Driven Engineering Languages and Systems (MODELS 2024).
Linz, Austria, Sept. 2024, à paraître. DOI: 10.1007/s10270-023-01142-0. URL: https://hal.sc
ience/hal-04700472 (cit. on p. 15).

[18] B. Šarenac, S. Ducasse, G. Polito and G. Rakic. ‘Modular and Extensible Extract Method’. In: Inter-
national Workshop on Smalltalk Technologies - IWST 24. Lille, France, 9th July 2024. URL: https:
//inria.hal.science/hal-04670318 (cit. on pp. 18, 25).

[19] I. Thomas, S. Ducasse, G. Polito and P. Tesone. ‘Assessing Reflection Usage with Mutation Testing
Augmented Analysis’. In: 21st International Conference on Software and Systems Reuse (ICSR
2024). Limassol, Cyprus, 19th June 2024. URL: https://inria.hal.science/hal-04600101
(cit. on p. 16).

Conferences without proceedings

[20] G. Darbord, N. Anquetil, B. Verhaeghe and A. Etien. ‘A Multi-Language Tool for Generating Unit
Tests from Execution Traces’. In: SANER 2025. Montréal, Canada, 4th Mar. 2025. URL: https://ha
l.science/hal-04841805 (cit. on p. 16).

[21] S. Labsari, I. Sayar, N. Anquetil, B. Verhaeghe and A. Etien. ‘Service Extraction from Object-Oriented
Monolithic Systems: Supporting Incremental Migration’. In: 2025 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). Montréal, Canada, 4th Mar. 2025. URL:
https://hal.science/hal-04951335.

Scientific books

[22] S. Ducasse. Building a minimal reflective kernel. 1st Dec. 2024. URL: https://hal.science/hal-
04888214 (cit. on p. 33).

[23] K. de Hondt, S. Ducasse, S. Jordan Montaño and E. Lorenzano. Application Building with Spec 2.0.
2024. URL: https://hal.science/hal-04888256 (cit. on p. 33).

Doctoral dissertations and habilitation theses

[24] A. Hosry. ‘External Dependencies in Programs: Specification, Detection and Incorrectness.’ Lille,
6th Dec. 2024. URL: https://hal.science/tel-04847289 (cit. on p. 31).

[25] I. Thomas. ‘Reflection Analysis and First Steps inIts Control’. Université de Lille, 7th Nov. 2024. URL:
https://inria.hal.science/tel-04845616 (cit. on p. 31).

Reports & preprints

[26] V. Bourcier, P. Rani, M. I. Willembrinck Santander, A. Bacchelli and S. Costiou. Empirically Eval-
uating the Impact of Object-Centric Breakpoints on the Debugging of Object-Oriented Programs.
11th Feb. 2025. DOI: 10.1145/3715759. URL: https://hal.science/hal-04948470.

[27] M. Denker, N. Anquetil, C. Bortolaso, S. Costiou, S. Ducasse, A. Etien, G. Polito, L. Safina and I.
Sayar. 2023 ACTIVITY REPORT Project-Team EVREF. INRIA, 1st Apr. 2024. URL: https://hal.sci
ence/hal-04556508.

[28] A. Etien and N. Anquetil. Automatic Recommendations for Evolving Relational Databases Schema.
Université de Lille, Faculté de Sciences et Technologies, 12th Apr. 2024. URL: https://inria.hal
.science/hal-04546264 (cit. on p. 15).

https://doi.org/10.1007/s10270-023-01142-0
https://hal.science/hal-04700472
https://hal.science/hal-04700472
https://inria.hal.science/hal-04670318
https://inria.hal.science/hal-04670318
https://inria.hal.science/hal-04600101
https://hal.science/hal-04841805
https://hal.science/hal-04841805
https://hal.science/hal-04951335
https://hal.science/hal-04888214
https://hal.science/hal-04888214
https://hal.science/hal-04888256
https://hal.science/tel-04847289
https://inria.hal.science/tel-04845616
https://doi.org/10.1145/3715759
https://hal.science/hal-04948470
https://hal.science/hal-04556508
https://hal.science/hal-04556508
https://inria.hal.science/hal-04546264
https://inria.hal.science/hal-04546264

36 Inria Annual Report 2024

Software

[29] [SW] V. Bourcier and S. Costiou, Scopeo version 1.0.0, 14th Mar. 2024. INRIA Lille - Nord Europe.
LIC: MIT License. HAL: 〈hal-04880231〉, URL: https://hal.science/hal-04880231, VCS:
https://github.com/scopeo-project/ScopeoExampleERA, SWHID: 〈swh:1:dir:b006859e
0291f62b4e6868f51f8c705e87fb4e3d;origin=https://github.com/scopeo-project/Sc
opeoExampleERA;visit=swh:1:snp:1ce6fb9de2f9a812dcda8eb1e30a3a068d2782a9;anch
or=swh:1:rev:eb1057b63339f394bdd712ad3a649c9492157f1f〉.

[30] [SW] S. Costiou, Phex version 1.0, 29th Dec. 2024. Centre Inria de l’Université de Lille. LIC: MIT
License. HAL: 〈hal- 04858390〉, URL: https://inria.hal.science/hal-04858390, VCS:
https://github.com/Pharo-XP-Tools/Phex, SWHID: 〈swh:1:dir:fccf734ffb8d01e9c3b0
3454422e97be18770f6a;origin=https://github.com/Pharo-XP-Tools/Phex;visit=swh
:1:snp:cf48b926d985066e803a7c3c822eaf0b8c8bbf3c;anchor=swh:1:rev:033c1e523df
ea5a12fffee1b8d88120f58e68982〉.

[31] [SW] S. Costiou and A. Vanègue, Chest version 0.5.1, 29th Dec. 2024. Centre Inria de l’Université de
Lille. LIC: MIT License. HAL: 〈hal-04858337〉, URL: https://inria.hal.science/hal-04858
337, VCS: https://github.com/pharo-spec/Chest, SWHID: 〈swh:1:dir:e17ddf4f775546a6
e5b4548879eee3e07e6227b3;origin=https://github.com/pharo-spec/Chest;visit=sw
h:1:snp:4f017094ae09aef0243db4b693cecac91e637b1a;anchor=swh:1:rev:feff10b5c8
bc2888d95cc42dc189c9688dfefc52〉.

[32] [SW] S. Costiou and A. Vanègue, Debugging Spy version 1.0, 29th Dec. 2024. Centre Inria de
l’Université de Lille. LIC: MIT License. HAL: 〈hal-04858378〉, URL: https://inria.hal.sci
ence/hal-04858378, VCS: https://github.com/Pharo-XP-Tools/DebuggingSpy, SWHID:
〈swh:1:dir:0f63d67301c0ad3174d17c89a13b52e595837877;origin=https://github.co
m/Pharo-XP-Tools/DebuggingSpy;visit=swh:1:snp:ae7703ee9ee6f77eb10697b7d9fdf9
0678a768a0;anchor=swh:1:rev:fbec9a14cbdaa478f498196c0f993062441ef3ae〉.

[33] [SW] S. Costiou and A. Vanègue, Sindarin version 12, 26th Apr. 2024. Centre Inria de l’Université
de Lille. LIC: MIT License. HAL: 〈hal-04850901〉, URL: https://inria.hal.science/hal-048
50901, SWHID: 〈swh:1:dir:4a7c622c61fcb3be319c91e5871b8c2d982b02c9;origin=https:
//github.com/pharo-spec/ScriptableDebugger;visit=swh:1:snp:5ada4e8d86339556b
d6e8fe7b3026173d012c962;anchor=swh:1:rev:368543cd0b13bffbd1100db94a11ecc3bb1
cda60〉.

[34] [SW] N. Hartl and M. Denker, Soil version v2, 28th Aug. 2024. ApptiveGrid; INRIA. LIC: MIT License.
HAL: 〈hal-04726251〉, URL: https://hal.science/hal-04726251, VCS: https://github.co
m/ApptiveGrid/Soil, SWHID: 〈swh:1:dir:7ab481741958af9189981e1c557aacfad5d78d7c
;origin=https://github.com/ApptiveGrid/Soil;visit=swh:1:snp:35d065c034bfd37a
5f0fe9a16e23b593f547de8d;anchor=swh:1:rev:0541435382436034a584a3aec8e1acada4
8c8bd9〉.

https://hal.archives-ouvertes.fr/hal-04880231
https://hal.science/hal-04880231
https://github.com/scopeo-project/ScopeoExampleERA
http://archive.softwareheritage.org/swh:1:dir:b006859e0291f62b4e6868f51f8c705e87fb4e3d;origin=https://github.com/scopeo-project/ScopeoExampleERA;visit=swh:1:snp:1ce6fb9de2f9a812dcda8eb1e30a3a068d2782a9;anchor=swh:1:rev:eb1057b63339f394bdd712ad3a649c9492157f1f
http://archive.softwareheritage.org/swh:1:dir:b006859e0291f62b4e6868f51f8c705e87fb4e3d;origin=https://github.com/scopeo-project/ScopeoExampleERA;visit=swh:1:snp:1ce6fb9de2f9a812dcda8eb1e30a3a068d2782a9;anchor=swh:1:rev:eb1057b63339f394bdd712ad3a649c9492157f1f
http://archive.softwareheritage.org/swh:1:dir:b006859e0291f62b4e6868f51f8c705e87fb4e3d;origin=https://github.com/scopeo-project/ScopeoExampleERA;visit=swh:1:snp:1ce6fb9de2f9a812dcda8eb1e30a3a068d2782a9;anchor=swh:1:rev:eb1057b63339f394bdd712ad3a649c9492157f1f
http://archive.softwareheritage.org/swh:1:dir:b006859e0291f62b4e6868f51f8c705e87fb4e3d;origin=https://github.com/scopeo-project/ScopeoExampleERA;visit=swh:1:snp:1ce6fb9de2f9a812dcda8eb1e30a3a068d2782a9;anchor=swh:1:rev:eb1057b63339f394bdd712ad3a649c9492157f1f
https://hal.archives-ouvertes.fr/hal-04858390
https://inria.hal.science/hal-04858390
https://github.com/Pharo-XP-Tools/Phex
http://archive.softwareheritage.org/swh:1:dir:fccf734ffb8d01e9c3b03454422e97be18770f6a;origin=https://github.com/Pharo-XP-Tools/Phex;visit=swh:1:snp:cf48b926d985066e803a7c3c822eaf0b8c8bbf3c;anchor=swh:1:rev:033c1e523dfea5a12fffee1b8d88120f58e68982
http://archive.softwareheritage.org/swh:1:dir:fccf734ffb8d01e9c3b03454422e97be18770f6a;origin=https://github.com/Pharo-XP-Tools/Phex;visit=swh:1:snp:cf48b926d985066e803a7c3c822eaf0b8c8bbf3c;anchor=swh:1:rev:033c1e523dfea5a12fffee1b8d88120f58e68982
http://archive.softwareheritage.org/swh:1:dir:fccf734ffb8d01e9c3b03454422e97be18770f6a;origin=https://github.com/Pharo-XP-Tools/Phex;visit=swh:1:snp:cf48b926d985066e803a7c3c822eaf0b8c8bbf3c;anchor=swh:1:rev:033c1e523dfea5a12fffee1b8d88120f58e68982
http://archive.softwareheritage.org/swh:1:dir:fccf734ffb8d01e9c3b03454422e97be18770f6a;origin=https://github.com/Pharo-XP-Tools/Phex;visit=swh:1:snp:cf48b926d985066e803a7c3c822eaf0b8c8bbf3c;anchor=swh:1:rev:033c1e523dfea5a12fffee1b8d88120f58e68982
https://hal.archives-ouvertes.fr/hal-04858337
https://inria.hal.science/hal-04858337
https://inria.hal.science/hal-04858337
https://github.com/pharo-spec/Chest
http://archive.softwareheritage.org/swh:1:dir:e17ddf4f775546a6e5b4548879eee3e07e6227b3;origin=https://github.com/pharo-spec/Chest;visit=swh:1:snp:4f017094ae09aef0243db4b693cecac91e637b1a;anchor=swh:1:rev:feff10b5c8bc2888d95cc42dc189c9688dfefc52
http://archive.softwareheritage.org/swh:1:dir:e17ddf4f775546a6e5b4548879eee3e07e6227b3;origin=https://github.com/pharo-spec/Chest;visit=swh:1:snp:4f017094ae09aef0243db4b693cecac91e637b1a;anchor=swh:1:rev:feff10b5c8bc2888d95cc42dc189c9688dfefc52
http://archive.softwareheritage.org/swh:1:dir:e17ddf4f775546a6e5b4548879eee3e07e6227b3;origin=https://github.com/pharo-spec/Chest;visit=swh:1:snp:4f017094ae09aef0243db4b693cecac91e637b1a;anchor=swh:1:rev:feff10b5c8bc2888d95cc42dc189c9688dfefc52
http://archive.softwareheritage.org/swh:1:dir:e17ddf4f775546a6e5b4548879eee3e07e6227b3;origin=https://github.com/pharo-spec/Chest;visit=swh:1:snp:4f017094ae09aef0243db4b693cecac91e637b1a;anchor=swh:1:rev:feff10b5c8bc2888d95cc42dc189c9688dfefc52
https://hal.archives-ouvertes.fr/hal-04858378
https://inria.hal.science/hal-04858378
https://inria.hal.science/hal-04858378
https://github.com/Pharo-XP-Tools/DebuggingSpy
http://archive.softwareheritage.org/swh:1:dir:0f63d67301c0ad3174d17c89a13b52e595837877;origin=https://github.com/Pharo-XP-Tools/DebuggingSpy;visit=swh:1:snp:ae7703ee9ee6f77eb10697b7d9fdf90678a768a0;anchor=swh:1:rev:fbec9a14cbdaa478f498196c0f993062441ef3ae
http://archive.softwareheritage.org/swh:1:dir:0f63d67301c0ad3174d17c89a13b52e595837877;origin=https://github.com/Pharo-XP-Tools/DebuggingSpy;visit=swh:1:snp:ae7703ee9ee6f77eb10697b7d9fdf90678a768a0;anchor=swh:1:rev:fbec9a14cbdaa478f498196c0f993062441ef3ae
http://archive.softwareheritage.org/swh:1:dir:0f63d67301c0ad3174d17c89a13b52e595837877;origin=https://github.com/Pharo-XP-Tools/DebuggingSpy;visit=swh:1:snp:ae7703ee9ee6f77eb10697b7d9fdf90678a768a0;anchor=swh:1:rev:fbec9a14cbdaa478f498196c0f993062441ef3ae
https://hal.archives-ouvertes.fr/hal-04850901
https://inria.hal.science/hal-04850901
https://inria.hal.science/hal-04850901
http://archive.softwareheritage.org/swh:1:dir:4a7c622c61fcb3be319c91e5871b8c2d982b02c9;origin=https://github.com/pharo-spec/ScriptableDebugger;visit=swh:1:snp:5ada4e8d86339556bd6e8fe7b3026173d012c962;anchor=swh:1:rev:368543cd0b13bffbd1100db94a11ecc3bb1cda60
http://archive.softwareheritage.org/swh:1:dir:4a7c622c61fcb3be319c91e5871b8c2d982b02c9;origin=https://github.com/pharo-spec/ScriptableDebugger;visit=swh:1:snp:5ada4e8d86339556bd6e8fe7b3026173d012c962;anchor=swh:1:rev:368543cd0b13bffbd1100db94a11ecc3bb1cda60
http://archive.softwareheritage.org/swh:1:dir:4a7c622c61fcb3be319c91e5871b8c2d982b02c9;origin=https://github.com/pharo-spec/ScriptableDebugger;visit=swh:1:snp:5ada4e8d86339556bd6e8fe7b3026173d012c962;anchor=swh:1:rev:368543cd0b13bffbd1100db94a11ecc3bb1cda60
http://archive.softwareheritage.org/swh:1:dir:4a7c622c61fcb3be319c91e5871b8c2d982b02c9;origin=https://github.com/pharo-spec/ScriptableDebugger;visit=swh:1:snp:5ada4e8d86339556bd6e8fe7b3026173d012c962;anchor=swh:1:rev:368543cd0b13bffbd1100db94a11ecc3bb1cda60
https://hal.archives-ouvertes.fr/hal-04726251
https://hal.science/hal-04726251
https://github.com/ApptiveGrid/Soil
https://github.com/ApptiveGrid/Soil
http://archive.softwareheritage.org/swh:1:dir:7ab481741958af9189981e1c557aacfad5d78d7c;origin=https://github.com/ApptiveGrid/Soil;visit=swh:1:snp:35d065c034bfd37a5f0fe9a16e23b593f547de8d;anchor=swh:1:rev:0541435382436034a584a3aec8e1acada48c8bd9
http://archive.softwareheritage.org/swh:1:dir:7ab481741958af9189981e1c557aacfad5d78d7c;origin=https://github.com/ApptiveGrid/Soil;visit=swh:1:snp:35d065c034bfd37a5f0fe9a16e23b593f547de8d;anchor=swh:1:rev:0541435382436034a584a3aec8e1acada48c8bd9
http://archive.softwareheritage.org/swh:1:dir:7ab481741958af9189981e1c557aacfad5d78d7c;origin=https://github.com/ApptiveGrid/Soil;visit=swh:1:snp:35d065c034bfd37a5f0fe9a16e23b593f547de8d;anchor=swh:1:rev:0541435382436034a584a3aec8e1acada48c8bd9
http://archive.softwareheritage.org/swh:1:dir:7ab481741958af9189981e1c557aacfad5d78d7c;origin=https://github.com/ApptiveGrid/Soil;visit=swh:1:snp:35d065c034bfd37a5f0fe9a16e23b593f547de8d;anchor=swh:1:rev:0541435382436034a584a3aec8e1acada48c8bd9

	Project-Team EVREF
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Research Axes within EVREF
	Axis 1 – Evolution of Ever-running Systems
	Axis 2 – New Generation Tools for Daily Tasks
	Axis 3 – A Generative Approach to Modular and Versatile Virtual Machines

	Application domains
	Programming Languages and Tools
	Software Reengineering

	Social and environmental responsibility
	Footprint of research activities
	Impact of research results
	Environment
	Social

	Highlights of the year
	Awards

	New software, platforms, open data
	New software
	Moose
	Pharo
	Soil
	Microdown
	Illimani Memory Profiler
	Pillar
	Reflectivity
	Chest
	Debugging Spy
	Phex
	Sindarin
	Scopeo
	Druid
	Ranger
	Mutalk
	PharoVM
	HeapFuzzer
	OpalCompiler

	New platforms
	Pharo
	Moose

	New results
	Evolution of Ever-running Systems
	New Generation Tools for Daily Tasks
	A Generative Approach to Modular and Versatile Virtual Machines
	Crosscutting all Axis / Support
	Pharo for Live Coding Music

	Bilateral contracts and grants with industry
	Berger Levrault, France
	Thales DMS, Brest, France: Graphics
	Thales DMS, Brest, France: Debugging
	 Pharo Consortium
	 Lifeware AG, Switzerland
	Dedalus
	CIFRE Framatome, Courbevoie, France

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program

	International research visitors
	Visits of international scientists
	Visits to international teams

	European initiatives
	H2020 projects
	Other european programs/initiatives

	National initiatives
	Regional initiatives

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Leadership within the scientific community
	Scientific expertise
	Research administration

	Teaching - Supervision - Juries
	Supervision
	Juries

	Popularization
	Specific official responsibilities in science outreach structures
	Productions (articles, videos, podcasts, serious games, ...)
	Participation in Live events
	Others science outreach relevant activities

	Scientific production
	Major publications
	Publications of the year

