
Transactional Contexts

Harnessing the Power of Context-Oriented Reflection

Sebastián González
Computer Engineering

Department
Université catholique de

Louvain
s.gonzalez@uclouvain.be

Marcus Denker
Computer Science

Department
University of Chile

denker@acm.org

Kim Mens
Computer Engineering

Department
Université catholique de

Louvain
kim.mens@uclouvain.be

ABSTRACT
The emerging field of context-oriented programming gives a
predominant role to the execution context of applications,
and advocates the use of dedicated mechanisms to allow the
elegant expression of behavioural adaptations to such con-
text. With suitable reflective facilities, language semantics
can be adapted to context by reusing the same context-
oriented mechanisms that allow base-level adaptability. This
kind of meta-level adaptability, in which the computation
model itself becomes adaptable to context, gives rise to
context-oriented computational reflection. To explore this
idea, we set out to implement a simple software transac-
tional memory system that exploits meta-level adaptability
by regarding transactions as contexts, and adapting fun-
damental system behaviour to such transactional contexts.
The implementation is succinct and non-intrusive, giving us
an indication of the power lying at the crossroads of context-
oriented programming and computational reflection.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Concurrent programming structures, Control
structures

General Terms
Design, Languages, Reliability

Keywords
Context-oriented programming, Computational reflection,
Software transactional memory

1. INTRODUCTION
The need for adequate programming techniques that enable
application context-awareness has given rise to the emerging
field of Context-Oriented Programming (COP) [3]. COP has
been approached chiefly from a programming language en-
gineering perspective, by introducing new language abstrac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP’09, July 7, 2009, Genoa, Italy.
Copyright c⃝ 2009 ACM 978-1-60558-538-3/09/07... $10.00

tions and run-time facilities that help expressing context-
dependent adaptations [8, 12, 18]. The combination of COP
with computational reflection opens further possibilities for
run-time software adaptability [4]. To the extent of our
knowledge, there are no documented attempts to adapt the
underlying computation model itself to context —that is,
the meaning of message passing, state manipulation, object
creation, inheritance, and so forth.

In this paper we show a first indication of the possibilities
offered by context-oriented computational reflection by im-
plementing support for lightweight software-based transac-
tions —actions that are atomic, isolated and abortable [19]—
using COP language abstractions and reflection. The lan-
guage abstractions are part of the Ambient Object System
(AmOS) [7], which is implemented on top of Common Lisp.
In essence, AmOS is a prototype-based computation model
featuring multimethods and subjective dispatch [15].1 Even
though the transaction mechanism we describe can be the
basis for a fully-fledged Software Transactional Memory sys-
tem [13], our goal is rather to make a case for the elegance
and usefulness of context-oriented reflection to adapt the
underlying computation model.

We use a running example for illustration. To motivate this
example, we start from a brief scenario describing typical
requirements to be addressed by a transactional system:

acme’s Ambient Shopping System (AmbiShop)
supports automatic payment of goods thanks to
Radio Frequency Identification (RFID) tags put
on all stock items. AmbiShop uses FIFO ac-
counting for managing the inventory —it regards
the first unit that arrived in inventory as the first
one sold. Hence, inventories are basically queues
from which the dealer draws items and sells them
to customers.

Items are drawn from the inventory in order.
Each item is accounted for and put in the client’s
order. If a problem arises in the middle of the
checkout operation (for instance, if the client runs
out of credit), the whole order is cancelled and
the client is notified.

1AmOS does not rely on the Common Lisp Object System
—the standard object-oriented extension of Common Lisp—
in particular because AmOS is not based on a notion of class.

(defproto @inventory (extend @queue))
(defproto @item (clone @object))
(add-slot @item 'description "An inventory item")
(add-slot @item 'entrance-date nil)
(add-slot @item 'exit-date nil)

Snippet 1: Definition of inventories and inventory
items.

To support proper cancellation of the checkout operation,
we use transactions. The transactions we define are atomic
“all or nothing” units of work in which arbitrary objects
are manipulated. The modifications made to objects are
either effective as a whole, or ineffective altogether. If it
is decided in the middle of execution of a transaction that
the changes should be cancelled, the programmer needs not
care about undoing the modifications that have been done to
every single object since the transaction began —this might
even be impossible, as the programmer does not necessarily
hold a reference to all affected objects. Transactions can be
aborted intentionally or due to an error.

Besides atomicity, a second important property of light-
weight transactions is isolation: the effects of operations
made within a transaction should be invisible to operations
outside the transaction. Isolation is relevant in concurrent
systems. In the scenario, isolation means that a thread
should never see the intermediate inventory states of an-
other thread that is currently performing a checkout oper-
ation —that is, the states in which only part of the items
corresponding to an order have been drawn from the inven-
tory.

In the remainder of the paper we show how the scenario
can be implemented straightforwardly thanks to lightweight
transactions (Section 2), and how the underlying transac-
tional support can be realised thanks to COP and reflection
(Section 3). We discuss the qualities and downsides of our
approach and its implementation (Section 4), and finish the
paper with the conclusions we have drawn from this experi-
ence (Section 6).

2. EXPECTED FUNCTIONALITY
This section shows user code and expected observable be-
haviour for a system implementing the scenario presented
in Section 1. We introduce in passing some of the main
concepts behind AmOS to ease comprehension of Section 3.

To implement the inventory, the user creates the @inventory
and @item prototypes shown in Snippet 1. By convention,
prototype names are prefixed with the @ symbol. In this
example, an inventory is simply a specialised queue. Inven-
tory items have a description and two timestamps: the date
when the item entered the inventory, and the date when it
was taken out. If the entrance date is nil, the item has not
entered the inventory yet; if the exit date is nil, it has not
left the inventory yet.

In Snippet 2, an inventory and order are created. The in-
ventory contains a few initial items. The state of inventories
can be inspected, showing the time at which each item en-
tered the inventory:

(defparameter *inventory* (clone @inventory))
(defparameter *order* (clone @inventory))
(enqueue (make-item "potatoes") *inventory*)
(enqueue (make-item "tomatoes") *inventory*)
(enqueue (make-item "oysters") *inventory*)

Snippet 2: Sample inventory and order.

(atomic
(loop until (emptyp *inventory*)

for item = (dequeue *inventory*)
do (enqueue (process item) *order*)))

Snippet 3: Atomic treatment of inventory and order
queues.

(describe *inventory*) →
potatoes (in: 2008/06/02 21:53)
tomatoes (in: 2008/06/02 21:53)
oysters (in: 2008/06/02 21:53)

(describe *order*) →
empty inventory

During the sell operation, items are dequeued from the in-
ventory, processed in some way, and enqueued in the or-
der. This logic is succinctly encoded as shown in Snippet 3.
For the sake of simplicity, the loop is repeated until the
inventory is exhausted. There are three main steps being
performed in the body of the loop; two of them —enqueue
and dequeue— are standard queue operations. The third is
the process method which abstracts away the bookkeeping
performed for each item that is being transferred from the
inventory to the order. The process multimethod, defined
in Snippet 4, has one argument named item, which is spe-
cialised on the @item prototype.2 In this example, process
simply timestamps the item with an exit time and returns
the item, without further accounting steps.

The most important part in Snippet 3 is the atomic form
that surrounds the loop; atomic ensures that the enclosed
body is performed atomically. Once the atomic block fin-
ishes, either all changes made are visible at once, or, in case
of error, no single change is visible, as if the atomic block
never executed. If an error arises while processing an item,
the programmer needs not determine the point at which
the loop stopped working and have a reverse loop undo the
changes. Further, the programmer needs no unprocess op-
eration to undo the processing performed by process for al-
ready transferred items. In complex situations, implement-
ing reverse application logic can be difficult and error prone.

If the transaction encoded in the loop of Snippet 3 executes
successfully, all items will have been transferred:
(describe *inventory*) →

empty inventory
(describe *order*) →

potatoes (in: 2008/06/02 21:53 out: ... 21:56)
tomatoes (in: 2008/06/02 21:53 out: ... 21:56)
oysters (in: 2008/06/02 21:53 out: ... 21:56)

2Note that, although similar, the defmethod construct we
use is unrelated to that of CLOS. AmOS introduces its own
method-definition construct.

(defmethod process ((item @item))
(setf (exit-date item) (get-universal-time))
item)

Snippet 4: Simple item processing

(defcontext @failing :uses (@standard))

(with-context @failing
(defmethod process ((item @item))

(when (> (random 2) 0)
(error "spurious error"))

(resend)))

Snippet 5: Faulty item processing logic.

The process method has timestamped all items with an exit
time (we omitted the date in the output to save space).

To show the behaviour of the system in case of failures,
we introduce a @failing context. In general, contexts are
objects representing physical and logical properties of the
environment in which the system is running. The @failing
context in particular represents a situation in which failure
testing is being performed on the system. A faulty version
of the process method is introduced in such context, shown
in Snippet 5.3 The call to random yields either 0 or 1 with
the same probability. Hence, the new version of process
will fail roughly half of the time. If it does not fail, it simply
invokes the non-faulty (original) behaviour of process by
means of a resend call. The resend method is analogous to
call-next-method in CLOS and super in Java.

Starting from the inventory of Snippet 2, but having this
time faulty process behaviour due to a manual activation
of the @failing context, we get different output from the
code in Snippet 3 when an error occurs:
(describe *inventory*) →

potatoes (entrance: 2008/06/02 22:44)
tomatoes (entrance: 2008/06/02 22:44)
oysters (entrance: 2008/06/02 22:44)

(describe *order*) →
empty inventory

Both queues are left untouched, as well as the items they
contain —a sign of this in the output is that none of the
items has an exit date.

3. TRANSACTIONAL CONTEXTS
Language support for lightweight transactions in modern
object-oriented languages is relatively recent [9]. Harris et
al. [10] show an atomic construct that is similar to the one
presented in Snippet 3. The mechanisms used to support
such atomic transactions are however quite different. We use
three advanced features of AmOS: contexts, reflection and
a become operation inspired on the Actors model [1].4 The
combination of these features makes the implementation of
transactions rather succinct and easy to understand.
3Note in passing this further application of COP for software
testing, more specifically for fault injection.
4Thanks to this operation, an object can be supplanted by
another one. Conceptually it remains the same —its identity
is preserved— but it assumes new behaviour.

1 (defmacro atomic (&body body)
2 `(let ((transaction (clone @transaction)))
3 (handler-case
4 (with-context transaction
5 ,@body)
6 (error (e)
7 (abort transaction)
8 (error e))
9 (:no-error (result)

10 (commit transaction)
11 result))))

Snippet 6: Implementation of atomic.

1 (defcontext @transaction)
2 ($add-slot @transaction 'log (make-hash-table))
3

4 (with-context @transaction
5 (defmethod alter-object (object)
6 (let ((log (log (host-context))))
7 (or (gethash object log)
8 (let ((altobj (clone-object object)))
9 (setf (gethash object log) altobj)

10 (setf (gethash altobj log) altobj)))))

Snippet 7: Transactional context definition.

3.1 Transactions as Contexts
The transactions we have defined are simply contexts. We
are thereby able to harness the existing context machin-
ery provided by AmOS to execute code in transaction con-
text. Thanks to this machinery, the atomic form is im-
plemented easily as a thin wrapper around with-context
—the usual construct for execution of code in a particular
context— as shown in Snippet 6. The atomic form is simply
syntactic sugar (a macro) to make managed invocations of
with-context. The code wrapped by atomic is received in
quoted form5 as the body parameter of the macro (line 1).
A clone of the prototypical @transaction is created (line 2)
and the body is executed in that fresh transaction context
(lines 4 and 5). If an error is signalled, the transaction is
aborted and the error is forwarded to outer error handlers
(by signalling it again in line 8). Hence, the atomic form
is transparent with respect to error handling. If the body
completes without error, the transaction is committed and
the result of the body’s execution is returned.

As shown in Snippet 7, transactions are specialised forms of
contexts that have a log (line 2). The log is a hash table map-
ping objects to their alter-objects (by analogy to alter ego,
“the other I” in Latin). Alter-objects are the transactional
versions of objects that have been modified in transaction
context. Given an object, the alter-object method defined
on line 5 returns the transactional counter part of the ob-
ject. The host-context call (line 6) yields the context where
the currently executing method was found. In the case of
alter-object, such context will be the trasaction that is
currently active (the “host transaction”). The alter-object is
thus fetched from the log of the current transaction (line 7).
If no alter-object has been defined yet, a new one is created
(line 8) and added to the log. Not only the original object
is associated with its alter-object (line 9), but also the alter-
object is associated with itself (line 10). Without the second

5Also called an s-expression in Lisp parlance.

1(with-context @transaction
2(defmethod add-slot (object name value)
3(setf object (alter-object object))
4(resend))
5(defmethod remove-slot (object index)
6(setf object (alter-object object))
7(resend))
8(defmethod (setf slot-value) (value object idx)
9(setf object (alter-object object))
10(resend)))

Snippet 8: Destructive operations specialised on
transactional context.

association, the system would create transactional versions
of alter-objects (alter-objects of alter-objects), and the chain
would continue endlessly this way, producing transactional
objects of transactional objects. There is no reason to keep
protected versions of objects that have already been modi-
fied in the current transaction.

The use of the $add-slot primitive instead of the regular
add-slot method on line 2 of Snippet 7 has to do with stop-
ping infinitely recursive calls when the transaction log is read
by alter-object. The $add-slot call creates a direct log
accessor method that bypasses regular message passing, so
that its invocation is not intercepted by transaction manage-
ment logic. Hence, a recursive invocation of alter-object
on line 6 is avoided. The use of $add-slot implies that the
case study is not implemented purely on top of the object
model; this is discussed later on.

3.2 Isolation of Destructive Operations
In transaction context, destructive operations such as add-
slot, remove-slot and (setf slot-value) are intercepted
and recorded in the current transaction log, instead of let-
ting them modify their target object. Destructive operations
are intercepted by defining transaction-specific versions, as
shown in Snippet 8. These operations are part of the Meta
Object Protocol (MOP) of AmOS. When a transaction con-
text is active, the specialised versions will be applicable, and
they will be more specific than the default versions. The
three operations use the alter-object method defined in
Snippet 7 to obtain a transactional version of their object
argument. For each destructive method, the object argu-
ment is set to the corresponding alter-object and the mes-
sage is resent. When invoked, the original versions of the
methods will modify the state of alter-objects, instead of
modifying original objects. Non-destructive operations need
not be specialised.

Besides destructive operations, one more reflective method
needs to be specialised on transaction context, although not
for logging purposes. As application code executes, the sys-
tem must make sure that any method invoked in transaction
context sees the transactional versions of modified objects
(i.e. the alter-objects), rather than the original versions.
The send method is specialised on @transaction context
for this purpose, as shown in Snippet 9. The do-slots form
iterates over the message arguments. It replaces each argu-
ment of the original message by the version in the current
transaction’s log. If the argument has not been modified in
transaction context and thus has no associated alter-object,
it remains unchanged (gethash returns its third parameter

1(with-context @transaction
2(defmethod send (selector arguments)
3(let ((log (log (host-context))))
4(do-slots (arguments argument index)
5(setf ($slot-value arguments index)
6(gethash argument log argument))))
7(resend)))

Snippet 9: Message sending behaviour for transac-
tional contexts.

1(defmethod reset ((transaction @transaction))
2(setf (log transaction) (make-hash-table))
3transaction)
4

5(defmethod clone ((transaction @transaction))
6(reset (resend)))
7

8(defmethod abort ((transaction @transaction))
9(forget transaction))
10

11(defmethod forget ((transaction @transaction))
12(reset transaction)
13(resend))
14

15(defmethod commit ((transaction @transaction))
16(maphash 'become (log transaction))
17;; rough edge starts here
18(dolist (dependent (find-combinations-including
19transaction))
20(unless (object-equal dependent transaction)
21(let ((original (combination-excluding
22dependent
23(list transaction))))
24(merge-contexts dependent original))
25(forget dependent))))

Snippet 10: Transactional context definition.

if the given key is not found in the hash table; in this case
the third parameter is the original argument of the mes-
sage). Note that we use the (setf $slot-value) primitive
on line 5 to set the value of each argument, instead of in-
voking the regular (setf slot-value) method. Sending
a message within the send method leads to infinite recur-
sion. For this reason, all invocations shown in Snippet 9 are
primitives, thus avoiding recursive calls of send.

This completes the explanation of how MOP methods are
specialised on transactional context to manage destructive
operations and thus achieve transaction isolation. Once
more, we observe that our support of transactions is not
implemented purely on top of the object-oriented model.
As illustrated throughout this section, we must use prim-
itives at certain places to avoid infinite recursion chains.
This is a natural consequence of interceding the most fun-
damental mechanisms of the model such as send and (setf
slot-value). Inifinite recursion is a well-known artefact of
reflection [2].

3.3 Transaction Management
Snippet 10 shows the implementation of main transactional
operations. The clone method is overloaded for transactions
so that each newly created transaction has a fresh log (cre-
ated by reset). Aborting a transaction simply means for-
getting the context, which is a standard operation in AmOS:

forget removes the given context from the context registry
maintained by the run-time system. The forget method is
specialised on transactions to reset the log, thereby freeing
held resources (i.e. letting the garbage collector reclaim the
alter-objects referenced by the log).

When a transaction is committed, the modified versions of
objects recorded in the log replace unmodified versions. To
this end, the transactional log is traversed by means of a
maphash call on line 16. The Actor-inspired become opera-
tion [1] is used to substitute the modified version stored in
the log for the unmodified one.6 Hence, the alter-objects
become the original objects.

Note that if another thread gains control in the middle of
a commit operation, it might see an inconsistent state in
which some alter-objects have become the original ones, but
others have not. To remedy this situation, commit should
prevent other threads from accessing any of the objects in
the transaction log until it finishes. We did not address this
issue in our case study.

Rough Edge
Normally, having every alter-object become the original ob-
ject as explained previously should be sufficient to commit
the transaction. However, in our implementation, context
objects are not protected by transactions. This means that
the context objects that were created during the transaction
need to be copied back to non-transactional context by hand
(lines 18–25 of Snippet 10). For the sake of brevity, we do
not explain this process here.

4. DISCUSSION
The transactional system we have presented is mainly a lat-
eral thinking experiment on novel ways to use COP. Instead
of exploring a typical COP application, we set out to explore
the feasibility of using contexts as transactions. This study
of COP for transactions is different from typical COP exam-
ples in that it “goes meta” —the application that is being
adapted is AmOS itself. Fundamental system behaviour is
thus specialised on transactional context and can vary at
run time depending on context.

Conceptually, we find it intuitive to think that a transac-
tion constitutes a special context in which code is run. Ob-
jects are seen from a transactional perspective, and from
this special point of view, their semantics is different than
the semantics observed from non-transactional perspectives,
in that changes are isolated and can be rolled back atom-
ically. This matches neatly the notion of subjective ob-
jects [16]. Technically, we observe that considering trans-
actions as plain contexts leads to a rather straightforward
implementation that exploits existing machinery. We inter-
cept all message sends and all calls to destructive operations
by specialising reflective operations, so that every single ob-
ject is protected in transaction context.

AmOS did not need any modification to accommodate the
transactional extension shown in the case study. This was
6Common Lisp’s standard maphash function calls the func-
tion passed as first argument for each key/value pair stored
in the hash table passed as second argument. This means
that become is called for each object/alter-object pair.

made possible thanks to its MOP. At the meta level, the
MOP of AmOS can be seen as a framework with hooks that
allow adaptation to different contexts (in this case, transac-
tional context). This is analogous to base-level frameworks
in which behaviour is defined through a well-designed set of
objects and hook methods. Clean framework protocols in-
crease the possibilities for context adaptation, whether these
protocols are at the base level or at the meta level.

In our implementation, adaptation code needs to bypass the
computation model. We believe however that this should
not be regarded as a paradigmatic shortcoming of COP.
Rather, it is a paradigmatic trap of reflection: such para-
doxes are observed regularly in systems that are about them-
selves. Examples are the metaclass regression problem en-
countered in Smalltalk [6] or the problem of unwanted meta-
level call recursion as described for CLOS [2]. Such regres-
sion problems must be shortcut in some way. In this pa-
per, we have realised a simple solution. We avoid recur-
sive calls by using primitive functionality at specific parts
of adapted reflective behaviour. Since we did not place
a shortcut within the computation model, the transaction
mechanism we present cannot be regarded as an extension
of AmOS, but rather as an integral part of the model. A
solution that we plan to explore in the future is to use COP
itself to solve the recursion problem more elegantly. The
problem of unwanted recursion is, in essence, a problem of
context. When executing meta-level behaviour, we do not
want to execute the meta-level behaviour again. This prob-
lem of calling the right behaviour depending on meta vs.
base-level execution is easily described as a context [5].

On a final note, we did not explore nested transactions yet,
although we foresee no fundamental impediment in support-
ing them with our approach: each transaction has its own
log, and at most one transaction can be active in the current
execution thread.

5. RELATED WORK

Context-Oriented Programming. ContextL [3] realizes a
context-oriented programming language. Layers provide be-
havior variations and can be enabled explicitly for the execu-
tion of a function and thus provide a form of execution con-
text. Reflection in ContextL has recently been explored [4],
but the focus has been reflective layer activation, rather than
making reflection itself context-aware.

Subjective Programming. Us [16] extends the prototype-
based language Self [17] to support subject-oriented pro-
gramming [11]. In Us, message lookup depends not only on
the receiver of a message, but also on a second object, called
the perspective. The perspective allows for layer activation
similar to ContexL. The paper discusses the usefulness of
subjectivity for controlling access to reflection APIs, but it
does not go as far as making reflection itself subjective.

The MetaHelix. The challenge of unwanted meta-level call
recursion has been explored by Chiba et al. [2]. The first
problem discussed is related to changes of structure. For
example, fields added as part of the implementation of a
reflective change are visible globally and thus destroy the

reflective model. The second problem noted is recursion:
any introduction of new meta-behavior can lead to an end-
less loop of calls to the same meta-behavior. The solution
proposed is the MetaHelix. All meta-objects have a field
implemented-by that points to a version of the code that is
not reflectively changed. The MetaHelix thus is very similar
to the solution presented in this paper. The system pro-
vides the programmer with the original version of the code
and the programmer can choose to call this version to break
recursion.

Meta Context. One of the authors has explored the no-
tion of contextual reflection for modeling meta-level execu-
tion [5]. Here reflection is made context-aware to solve the
recursion problem. As we discuss in Section 4, the same
problem can be seen in AmOS. We think that combining
both ideas is interesting and we plan to work on combining
both models in the future.

Transactional Memory for Smalltalk. Renggli et al. [14]
have realised transactional memory for Smalltalk without
changes to the virtual machine. The implementation there-
fore heavily relies on reflection to implement transactional
memory. Reflection is used for realising context-dependent
code execution, yet the system does not provide an object
model where reflection in general is contextual.

6. CONCLUSIONS
Context-oriented reflection is a particular case of context-
oriented programming in which the object model itself be-
comes adaptable according to context. Despite a few glitches
in our implementation, the case study we present on light-
weight memory transactions constitutes a first indication
that COP makes a powerful combination with computa-
tional reflection. Fundamental system behaviour is adapted
to situations in which a memory transaction is taking place.
Such adaptation is succinct and easy to understand. This
experiment leads us to conclude that context-oriented reflec-
tion is worth further exploration, in particular the idea of
defining lightweight memory transactions as plain contexts.

7. ACKNOWLEDGEMENTS
This work has been supported by the ICT Impulse Pro-
gramme of the Institute for the encouragement of Scientific
Research and Innovation of Brussels, by the Interuniversity
Attraction Poles Programme of the Belgian State, Belgian
Science Policy, and by the Biologically Inspired Languages
for Eternal Systems project of the Swiss National Science
Foundation.

8. REFERENCES
[1] G. A. Agha, I. A. Mason, S. F. Smith, and C. L.

Talcott. A foundation for Actor computation. Journal
of Functional Programming, 7(1):1–72, 1997.

[2] S. Chiba, G. Kiczales, and J. Lamping. Avoiding
confusion in metacircularity: The meta-helix. In
Proceedings of International Symposium on Object
Technologies for Advanced Software, volume 1049 of
LNCS, pages 157–172. Springer, 1996.

[3] P. Costanza and R. Hirschfeld. Language constructs
for context-oriented programming: an overview of

ContextL. In Dynamic Languages Symposium, pages
1–10. ACM Press, Oct. 2005.

[4] P. Costanza and R. Hirschfeld. Reflective layer
activation in ContextL. In Proceedings of the ACM
symposium on Applied computing, pages 1280–1285.
ACM Press, 2007.

[5] M. Denker, M. Suen, and S. Ducasse. The meta in
meta-object architectures. In Proceedings of the
International Conference on Objects, Components,
Models and Patterns, volume 11 of LNBIP, pages
218–237, 2008.

[6] A. Goldberg and D. Robson. Smalltalk 80: the
Language and its Implementation. Addison Wesley,
Reading, Mass., May 1983.

[7] S. González, K. Mens, and A. Cádiz.
Context-Oriented Programming with the Ambient
Object System. Journal of Universal Computer
Science, 14(20):3307–3332, 2008.

[8] S. González, K. Mens, and P. Heymans. Highly
dynamic behaviour adaptability through prototypes
with subjective multimethods. In Dynamic Languages
Symposium, pages 77–88. ACM Press, Oct. 2007.

[9] T. Harris and K. Fraser. Language support for
lightweight transactions. ACM SIGPLAN Notices,
38(11):388–402, 2003.

[10] T. Harris, S. Marlow, S. Peyton-Jones, and
M. Herlihy. Composable memory transactions. In
Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
pages 48–60. ACM Press, 2005.

[11] W. Harrison and H. Ossher. Subject-oriented
programming: A critique of pure objects. ACM
SIGPLAN Notices, 28(10):411–428, 1993.

[12] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125–151, March–April 2008.

[13] V. J. Marathe and M. L. Scott. A qualitative survey
of modern software transactional memory systems.
Technical Report TR 839, University of Rochester
Computer Science Dept., June 2004.

[14] L. Renggli and O. Nierstrasz. Transactional memory in
a dynamic language. Journal of Computer Languages,
Systems and Structures, 35(1):21–30, Apr. 2009.

[15] L. Salzman and J. Aldrich. Prototypes with multiple
dispatch: An expressive and dynamic object model. In
Proceedings of the European Conference on
Object-Oriented Programming, volume 3586 of LNCS,
pages 312–336. Springer-Verlag, 2005.

[16] R. B. Smith and D. Ungar. A simple and unifying
approach to subjective objects. Theory and Practice of
Object Systems, 2(3):161–178, 1996.

[17] D. Ungar and R. B. Smith. Self: The power of
simplicity. ACM SIGPLAN Notices, 22:227–242, 1987.

[18] J. Vallejos, P. Ebraert, B. Desmet, T. Van Cutsem,
S. Mostinckx, and P. Costanza. The
context-dependent role model. In Proceedings of the
International Conference on Distributed Applications
and Interoperable Systems, pages 277–299.
Springer-Verlag, 2007.

[19] P. Van Roy and S. Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, 2004.

