
End-User Abstractions for Meta-Control: Reifying the

Reflectogram

Nick Papoulias, Marcus Denker, Stéphane Ducasse, Luc Fabresse

To cite this version:

Nick Papoulias, Marcus Denker, Stéphane Ducasse, Luc Fabresse. End-User Abstractions for
Meta-Control: Reifying the Reflectogram. 2017. <hal-01424787>

HAL Id: hal-01424787

https://hal.inria.fr/hal-01424787

Submitted on 2 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01424787

End-User Abstractions for Meta-Control:
Reifying the Reflectogram

N. Papouliasa,b, M. Denkerc, S. Ducassec, L. Fabressed

aIRD, UMI 209, UMMISCO, IRD France Nord
http:// www.ird.fr/

bSorbonne Universites UPMC, Univ. Paris 06, France
http:// upmc.fr/

cRMoD, Inria Lille Nord Europe
http:// rmod.lille.inria.fr

dMines Telecom Institute, Douai
http:// www2.mines-douai.fr

Abstract

Reflective facilities in OO languages are used both for implementing language
extensions (such as AOP frameworks) and for supporting new programming
tools and methodologies (such as object-centric debugging and message-based
profiling). Yet controlling the runtime behavior of these reflective facilities
introduces several challenges, such as computational overhead, the possibility of
meta-recursion and an unclean separation of concerns between base and meta-
level. In this paper we present five dimensions of meta-level control from related
literature that try to remedy these problems. These dimensions are namely:
temporal and spatial control, placement control, level control and identity control.
We then discuss how these dimensions interact with language semantics in class-
based OO languages in terms of: scoping, inheritance and first-class entities.
We argue that the reification of the descriptive notion of reflectogram can unify
the control of meta-level execution in all these five dimensions while expressing
properly the underlying language semantics. We present an extended model for
the reification of the reflectogram based on our additional analysis and validate
our approach through a new prototype implementation that relies on byte-code
instrumentation. Finally, we illustrate our approach through a case study on
runtime tracing.

Keywords:
Reflection, Intercession, Reflectogram, Explicit Control

1. Introduction

The notion of reflection was formally introduced to programming language
literature by Brian Cantwell Smith in 1982 (by means of the programming
language 3-LISP [26]). In OO reflective systems, reflection is concretized using
a MOP (Meta-Object Protocol) [11]. A meta-object is a regular object that

Preprint submitted to SCIENCE OF COMPUTER PROGRAMMING December 17, 2016

http://www.ird.fr/
http://upmc.fr/
http://rmod.lille.inria.fr
http://www2.mines-douai.fr

describes, reflects or defines the behavior of a notion of the language in question
[13]. The process of materializing a notion of a language (such as an object, a class,
a context or a method) as an object inside the language itself is called reification.
Reflective facilities in OO languages [5] are used both for implementing language
extensions such as AOP frameworks [29] and for supporting new programming
tools and methodologies such as object-centric debugging [23] and message-based
profiling [1].

Yet, controlling the runtime behavior of reflection introduces several challenges
such as computational overhead [14], the possibility of meta-recursion [6, 7] and an
unclean separation of concerns between base and meta-level [2]. These problems
arise mainly when implicit reflection (i.e., reflection that is activated implicitly
by the interpreter on pre-defined execution events [14]) alters the semantics of a
running process in ways that lead to excess overhead or inconsistencies.

Although implicit reflection involves complicated modeling concerns, it is
useful to consider it – in its most simple form – as operating similarly to an
Event-Condition-Action model [8, 30]. In a class-based OO language the ECA
model would be depicted as shown in Figure 1. The Event (left part of Figure 1)
in the case of implicit reflection is a semantic action of the underlying interpreter
(e.g., read/write slot, message send, method execution etc.) while both Condition
and Action can be considered as custom code snippets (such as block closures)
defined by the developer. Registration of such events can take the following form
(code presented in Smalltalk syntax):

Script 1: Implicit Reflection Example

1 MsgSend
2 when: [countingFlag = true]
3 do: [messageCounter := messageCounter + 1]

In essence, the interpreter triggers an Event (such as a message send) if a
predefined condition is met for that event (e.g., a counting flag is set) and then a
reflective action is implicitly evaluated (e.g., a message counter is incremented).

ConditionEvent

MsgSend MsgReceived IvRead […]

1* Action11

BlockClosure

Figure 1: Implicit Reflection as an Event-Condition-Action model

2

Starting from this general (albeit naive) model for implicit reflection this
paper presents five dimensions of meta-level control from related literature,
namely: temporal and spatial control, placement control, level control and
identity control. We then discuss how these dimensions interact with language
semantics in class-based OO languages in terms of: scoping, inheritance and
first-class entities. We argue that the reification of the descriptive notion of
reflectogram [30] can unify the control of meta-level execution in all these five
dimensions while expressing properly the underlying language semantics.

The idea of reflectogram was proposed by Tanter et al. [30] as a visual
depiction of the control flow between the base and the meta-level. Our work
proposes to concretize this depiction as an explicit programming language
entity. We present an extended model for the reification of the reflectogram
based on additional analysis described in this paper. We validate our approach
through a new prototype implementation. This revised implementation uses
byte-code instrumentation instead of a custom VM, making it compatible with
the production Pharo VM and its JIT. Finally, we detail a case study on
unanticipated tracing showing that all five dimensions are needed in practical
applications and a unified abstraction (such as the reflectogram) is warranted.

The contributions of this work are the following:

• The presentation of different dimensions of meta-control that have been
previously treated separately in literature.

• A model for the reification of the reflectogram.

• An implementation of our proposition and its validation.

This paper is an extended version of our previous work [19] that provides
the following additional contributions:

• An analysis of the interaction between meta-control dimensions and lan-
guage semantics in class-based OO languages in terms of: scoping, inheri-
tance and first-class entities.

• Several extensions to the initial model that are based on our additional
analysis, including the introduction of the class ReflectoPoint which now
seperately represents a single point (meta-jump) of the reflectogram.

• A second implementation of our proposition that is based on byte-code
instrumentation, on top of Reflectivity1 for Pharo2 and is now compatible
with a production VM that integrates a JIT. This allowed us to further
discuss implementation options comparing to our previous results on top
of a JIT-less dedicated VM.

The rest of this paper is organized as follows. Section 2 presents the different
dimensions of meta-level control. Section 3 presents our analysis on meta-control

1http://scg.unibe.ch/research/reflectivity
2http://pharo.org/

3

and language semantics in class-based OO systems. Section 4 presents our
extended model for the reification of the reflectogram. Section 5 illustrates a
case study on unanticipated tracing using our approach. Section 6 details the
new prototype implementation of our approach in Pharo and compares different
implementation options. Section 7 compares related work. Finally, Section 8
concludes the paper and discusses future perspectives.

2. Dimensions of Meta-Control

2.1. Temporal Control
We refer to the temporal control of implicit reflection as the ability of runtime

installation, activation, de-activation and removal of reflective facilities. Temporal
control allows a programmer to define when an event will actually be reified by
controlling the time of its activation. In essence, setting up meta-actions for
events such as the one we described on Script 1 can either be done statically
(at compile or load time) or dynamically at run time. In this latter case, trivial
conditions like the countingFlag of Script1 are redundant since meta-actions can
be installed, enabled, disabled or removed during execution:

Script 2:Temporal Control Example

1 MsgSend do: [messageCounter := messageCounter + 1].
2 ... "code whose messages will be counted"
3 MsgSend disable

Temporal control of reflective facilities at runtime can support unanticipated
behavioral reflection as was first illustrated by Redmond et al. [22] for the
Iguana/J framework [21]. Röthlisberger et al. [25] further optimized this
approach by supporting unanticipated partial behavioral reflection in Geppetto.
Examples include the temporal control of profiling facilities at runtime to facilitate
memoization and caching. Röthlisberger et al. give such an example for web
applications in [25].

2.2. Spatial Control
Spatial control was introduced (as such) by Tanter et al. [30] to support a

partial reflection scheme in Reflex. This is in spite of the fact that analogous
mechanism predate Reflex (such as the CLOS MOP [11]), but which do not
distinguish between the different dimensions of their facilities. Spatial control
allows a programmer to narrow the scope of implicit reflection to specific entities
(objects, classes, methods etc.) and operations thus optimizing performance. In
a model supporting spatial control our example from Script 1 would be written
as follows:

Script 3: Spatial Control

1 SomeClass
2 on: MsgSend
3 when: [countingFlag = true]
4 do: [messageCounter := messageCounter + 1]

4

The difference here on Script 3 (line 1) with our initial example is that
a specific class is targeted to be interceded rather than the whole system.
Implementations of spatial control — such as the one of Reflex [30] — provide
even finer control over what is reified. This is accomplished by targeting single
operations on a sub-method level. Other approaches restrict reifications to
specific objects over particular executions as in the case of Bifrost [23]. With
spatial control unnecessary jumps to the meta-level (e.g., for classes other than
SomeClass) can be avoided resulting in an execution speed-up of reflective code.

2.3. Placement Control
On the other hand, placement control allows a programmer to define the

relative timing of an action in relation to its event as exemplified by Tanter et
al. [30], but also in works related to method slots [32] and wrappers [3]. For
example, user-defined actions can be triggered before or after an event or even
totally replace the default semantic action.

Script 4: Placement Control

1 SomeClass
2 on: MsgSend
3 when: [countingFlag = true]
4 before: [Transcript show: ’A message will be sent from SomeClass’]
5 after: [messageCounter := messageCounter + 1]

This is shown on lines 4 and 5 of Script 4 where two different meta-actions
are registered to be triggered for message sends of SomeClass. The first on line
4 is a logging meta-action registered to be triggered before the actual message
send at the base-level code of SomeClass. While the second action (line 5) is
our counter increment example registered to be performed after the event of the
message send.

Spatial, temporal and placement control can be used in a variety of contexts
where partial reflection is applicable. The most prominent examples can be
found in implementations of AOP frameworks [29].

2.4. Level Control
Level control refers to the ability of assigning different reflective behavior to

different meta-levels of a reflective tower [31]. Conceptually in OO languages we
can say that we operate in a new "higher" meta-level whenever a new reflective
action is triggered from within the meta-level itself. This process can continue
indefinitely if reflective actions are not carefully coded. In this case the problem
of infinite meta-recursion occurs [6].

A simple case of infinite meta-recursion illustrating the problem is given on
Script 5. On lines 1 to 3, we register (through the message #on:do:) a callback for
the MessageReceived event (line 2) of the instance anObject (line1). Essentially, we
want the block closure on line 3 to be triggered every time the instance anObject
receives a message. Alas, on line 3 in order to increment a message counter
(message #incrementMessageCounter) we send another message to the instance

5

anObject from within the meta-level. This new message send will re-trigger the
MessageReceived event, re-triggering the callback on line 3, and resulting in an
infinite recursion.

Script 5: The meta-recursion problem

1 anObject
2 on: MessageReceived
3 do: [anObject incrementMessageCounter]

Denker et al. [7] first proposed a level control mechanism to solve the meta-
recursion problem in OO languages through the reification of the metaContext,
which represents the level in which a meta-jump occurs. The metaContext is an
implicit entity of the meta-level, in the sense that the developer does not invoke
it explicitly but rather executes code or binds meta-objects to specific meta-levels
(as shown on Script 6). As described in [7] in order to control the meta-level and
avoid meta-recursion, Denker et al. provide a way to run a block-closure one
meta-level higher than the code outside the block as follows:

Script 6: Code execution with a metaContext [7]

1 [... code executing on meta−1 ...] valueWithMetaContext
2 ...
3 [
4 [... code executing on meta−2 ...] valueWithMetaContext
5

6] valueWithMetaContext

More recently and in another context (that of AOP) the idea of execution
levels has been proposed [27, 28]. These execution levels provide a concrete
solution to the problem of aspect loops (the equivalence of meta-recursion in
AOP) for languages such as AspectScript [20] and AspectJ [12].

Besides being a solution to the meta-recursion problem, level control can
prove useful in other contexts of meta-circularity. Examples include the profiling
of meta-level execution itself through reflection.

2.5. Identity Control
When base-level objects are responsible for their own reflective operations

it is hard to allow finer control over reflective behavior. Identity control is the
factoring of reflective operations out of the targeted base-level objects. This
decomposition was investigated by Bracha and Ungar through Mirrors [2] but
has been studied in different contexts as well [9, 4]. AmbientTalk [17] was the
first mirror-based implementation specifically targeting implicit reflection.

With identity control the meta-object (mirror-based or otherwise) assumes
the identity of the receiver of the reflective method, bypassing the object’s control
altogether. From this perspective the problem is also closely related to the ideas
of both subject and context-oriented programming [34, 33, 35]. Indeed these

6

two paradigms deal with variations of object behavior that conceptually do not
depend on one specific object, but rather on the execution context and its state.

Identity control can prove useful in situations such as the one depicted in
Figure 2. In Figure 2 anObjectInpector wants to inspect the slots of a base-level
object. This object (aPersistentObject) supports persistency (on a file or on a
database) through reflective intercession. This means that the semantics for
accessing instance variables of a persistent object have changed through reflection
to synchronize the state of the object with external data storage. Let us now
assume that this was achieved by instructing the compiler to transform each
read and write access to instance variables into meta-level calls. For example, in
this case each read access of instance variables in the class PersistentObject will be
redirected to the meta-level method #instVarAt which has been overridden from
Object to provide the additional functionality.

Although this change in semantics for aPersistentObject is desirable, it does
not make sense in the case of anObjectInspector. The object anObjectInspector (as
do most programming tools) wants direct access to the slots of aPersistentObject
without triggering the back-end (i.e., database) logic. Bracha and Ungar suggest
that for such cases reflective facilities that are not part of the language kernel
should be used. In this example a separate read access method from the one
depicted in Object»#instVarAt: — and which the ObjectInspector»#instVarAt: invokes
— can be used.

This is the case of the #objInstVarAt: method of ObjectInspector which has read ac-
cess through direct virtual-machine support to object slots bypassing the targeted
object’s control. What has essentially changed here between Object»#instVarAt:
and ObjectInspector»#objInstVarAt: — which perform the same operation — is the
identity of the receiver of the reflective action. In the first case the receiver is
aPersistentObject while in the latter it is anObjectInspector.

ObjectInspector

+ instVarAt(anIndex)
+ objInstVarAt(anObject, anIndex)

Object
+ instVarAt(anIndex)
...

anObjectInspector aPersistentObject

PersistentObject
+ instVarAt(anIndex)
...

- inspectedObj: Object

inspectedObj

instVarAt
Through core-reflection

objInstVarAt
Through direct VM support

Figure 2: Inspecting an intercessed object

In summary, identity control besides solving problems as the one we described
above promotes a stricter separation of concerns between base-level and meta-
level functionality.

7

3. Meta-control and Language Semantics

Using meta-level facilities as the ones we described in Section 2 presents
certain challenges in class-based OO languages. In this section we report and
categorize these issues, using mainly an instance and a class entity as our
running examples. Nevertheless, similar issues apply to other OO entities such
as environments, packages, methods, processes and contexts.

3.1. Meta-control and Scoping Semantics
The ECA model for implicit reflection we saw in Section 1 describes events

that are implicitly triggered at specific program execution points. The definition
of these execution events though are highly dependent on the concrete imple-
mentation of a reflective framework. While the developer may expect an event
of the form "anEntity on: <Event> do:..." to always behave the same way, we
will shortly see that an <entity3, event> pair does not unambiguously define a
reflective operation.

Our first example on Script 7a below involves a terminal instance and two
events (on lines 1 and 3 respectively):

Script 7a: Scoping: Reducing vs. Specializing

1 anInstance on: MsgSend do: [...]
2

3 anInstance on: PassedAsArg do: [...]

Now, on line 1 of Script 7a above, the event MsgSend (a method invocation)
which by itself has a global scope (can happen anywhere) is reduced to the scope
of a specific object. Script 3 also shows an example of such a scoping.

But then on line 3 the event PassedAsArg (passing a reference of an entity in a
dynamic method invocation) which (as with MsgSend) has by itself a global scope
(can happen anywhere) may have different interpretations. On the one hand as
before (line 1) it may be interpreted as reducing the scope of the event, to the
object’s scope. On the other hand though it may be interpreted as specializing
the event (i.e., the event remains global but is only triggered if this specific
object is passed as an argument). Indeed passing even a specific object as an
argument (in a dynamic environment) can happen anywhere.

So far we can say that depending on the event, meta-control can either reduce
the global scope of an event or specialize it with a condition (while it remains
global). The situation becomes a little more complicated on Script 7b. Here,
we have the same event as line 3 of Script 7a but the entity is now the class of
anInstance. In this case, depending on the implementation we can either:

Script 7b: Scoping: Reducing vs. Specializing

1 anInstance class on: PassedAsArg do: [...]

3instance, class, package etc.

8

1. Treat the class as a scope and more specifically, as a set of lexical scopes
(methods) from which we will intercess all PassedAsArg events (regardless
of which object is passed), similarly to the event of line 1 (ie reduce the
scope).

2. Treat the class as a set of runtime entities and trigger the PassedAsArg
event whenever an object of the specific class is passed as an argument, as
in the event of line 3 (ie specialize).

3. Finally, if the underlying language supports first-class classes, there is a
third option: Treat the class as an object itself and trigger the PassedAsArg
event whenever the class itself is passed as an argument.

3.2. Meta-control and First-class entities
This last case (first-class entities) is the intended mode of operation of

our second example below (Script 8). In this example, starting at line 1, the
MsgReceive event is specialized by the first-class instance of (anInstance class)
with the condition that the dynamic method invoked has the signature #basicNew
(line 3). Essentially, this snippet simulates the ObjectCreation event (signaled
whenever an instance of a specific class is created), showing that this third choice
(of treating classes as first-class in implicit reflection) is not a marginal but a
very useful case.

Script 8: Simulating ObjectCreation

1 anInstance class
2 on: MsgReceive
3 when: [:selector |
4 (selector = #basicNew) | (selector = #basicNew:)]
5 do: [...]

3.3. Meta-control and Inheritance
Finally, we discuss inheritance. Consider a class hierarchy (as the one depicted

in Figure 3 originating from Object with a subclass A then a subclass of A named
B and finally, a subclass of B named C. Assuming that MsgReceive here treats
its target (say the class B) as a set of runtime entities, what does a reflective
MsgReceive event (as the one we saw in the above snippet) mean when applied
to class B for instances of C and for the methods of A ?

Object A CB cInstance
+ methodOfA
…

+ methodOfB
…

+ methodOfC
…

Figure 3: A simple hierarchy with class B as a reflection target

Here we have the following (canonical) outcome:

9

• Concerning messages received by instances of B that invoke methods
inherited from A the canonical response is to intercept them.

• Concerning instances of C the canonical approach is to intercept only those
messages that invoke methods of B and A (but not methods of C).

However, this is not always the desired outcome. Consider, for example,
that the canonical approach here will also intercess all methods of Object (the
root of the hierarchy) for the instances affected. This is a problem as Object
includes in most systems critical system methods that should not be intercepted.
Propagating reflective behavior automatically inside the hierarchy chain like
that may not be the desired outcome, especially for long hierarchies where the
developer is subclassing without actual knowledge of the inherited functionality.
Similar issues arise in class-based OO languages for other events such as IVRead
(instance variable read) and IVWrite (instance variable write).

3.4. Summary
In summary, given the above ambiguities in terms of scope, first-class entities

and inheritance, we believe that models of implicit reflection should make the
distinctions mentioned in this section between different cases explicit. Alter-
natively reflective frameworks should allow developers to decide for each case
programmatically.

4. Reifying the Reflectogram

The notion of reflectogram was introduced by Tanter et al. [30] as a conceptual
illustration to describe meta-level behavior to human readers:

[...] A reflectogram illustrates the control flow between the base-level and the
meta-level during execution.

For example, in the left part of Figure 4 we see a diagram from Tanter
et al. describing spatial control and partial reflection, while in the bottom
part of Figure 4 we see a depiction from the same paper of temporal control.
Other researchers have used similar control flow illustrations to describe different
dimensions of meta-level behavior as the diagram we reproduce from [7] (right
part of Figure 4) describing level control.

Given the versatility of the reflectogram for describing meta-level behavior,
the rest of section describes our proposition of reifying it as an explicit meta-
object. This meta-object is passed as an argument at runtime to conditions and
implicit actions invoked by the underlying execution environment. Our goal is to
unify the control of meta-level execution under a single abstraction for end-users.

4.1. Reifying the Reflectogram
Our proposal (shown in Figure 5) in its more general form extends the

Event-Condition-Action model of implicit reflection (depicted in Figure 1) by
establishing a one-to-many relation of both the condition and the action with the

10

Figure 4: Diagram of the reflectogram in literature: Tanter et al. (left and bottom) [30] and
Denker et al. [7] (right)

reified reflectogram. More specifically, this relationship is between the reflecto-
point (reifying a single point of the reflectogram) and the meta-conditions/actions.
The relationship is one-to-many in the sense that a single action or condition
can be registered for multiple objects. Upon each invocation, the reflectogram
corresponding to the particular object that triggered the event creates a new
reflectopoint that will be passed as an argument to the meta-level.

Besides holding a reference to that targetObject, the reflectogram should
provide meta-information through each reflectopoint for the currently triggered
event which — depending on the implementation — can be used to parametrize
conditions and actions at runtime.

Compared with our initial model [19] the introduction of the reflectopoint
makes explicit the fact that there is a new meta-object generated for each meta-
jump. This meta-object can now control the outcome of individual reflective
operations. This allows us to make a clear distinction between:

• Reflectopoints, representing single-points (jumps) on the reflectogram

• and the reified reflectogram itself, which through event registration controls
the overall evolution in time of a target object.

Furthermore, in order to address the issues identified in Section 3 we introduce
one level of indirection between the ReflectoGram and its targeted object through
the extended class Target described in detail in Section 4.3.

Event Registration. The reflectogram controls the spatial dimension of implicit
reflection at runtime through the methods #on:when:do: and #on:for:do:when:. The
latter method is either a static or a class-side method depending on whether
classes in the target language are first class or not. Registering an event for a
specific object can be modeled as follows:

11

ReflectoPoint

ConditionEvent

MsgSend MsgReceived IvRead […]

1* Action
11

BlockClosure

1
* *

1ReflectoGram *1Target *

- targetedObject
- associatedEvent
- scope
- hierarchy
…

+ enable
+ disable
+ remove

+ on:do:when:
+ on:for:do:when:

+ defaultAction
+ returnValue:

+ processMetaLevel
+ objectMetaLevel

+ at:
+ at:put:
+ perform:withArgs:

- target
- reifications

Spatial

Temporal

Placement

Level

Identity

+ enable
+ disable
+ remove

+ on:do:when:
+ on:for:do:when:

- targets
- targetedObject

Spatial

Temporal

Figure 5: Our extended proposal: Reifying the Reflectogram

Script 9: Registering events with the reflectogram

1 Reflectogram
2 on: anObject
3 for: MessageReceived
4 when: [:reflectopoint | "condition"]
5 do: [:reflectopoint | "action"]

As seen on lines 4 and 5 of Script 9, conditions and actions in our model
receive an argument (reflectopoint) which describes and controls the "shape" of
the reflectogram for each meta-level jump of the associated base-level object.
The class-side method #on:for:do:when: is used for the initial registration of an
event. Its instance-side counterparts #on:when:do: provides the same functionality
in order to register more events at runtime from within the meta-level.

It is worth noting here that while we are assuming a single meta-level for
our system, both conditions and actions depicted in Figure 5 can be considered
as first-level implicit meta-objects. That is, objects that are invoked implicitly
during specific events by the underlying execution environment [14]. From this
perspective both the reflectogram and the reflectopoints can be seen as second-
level explicit meta-objects, in the sense that their domain is the control of the

12

first implicit meta-level of conditions and actions.

4.2. The Reflectogram API
The API of our model is organized into five distinct protocols corresponding

to the five dimensions for meta-level control discussed in Section 2:

Temporal Protocol. Methods #enable, #disable and #remove as their name
suggests control the actual triggering of events. Implementors can choose to
provide static counterparts for convenience (such as #enableFor:, #disableFor:
etc.).

Spatial Protocol. Methods #on:when:do:, #on:for:do:when: control spatial selec-
tion by registering events for specific objects as it has been described
above.

Placement Protocol. Methods #defaultAction and #returnValue: control the place-
ment of meta-actions. The reflectogram can invoke the default base-level
action from within the meta-level thus implicitly defining which meta-level
statements will be executed before and which statements after the actual
event. Regardless of whether the default action has been triggered from
within the meta-level the value that will be returned to the base-level can
be explicitly set, thus facilitating total replacement of base-level semantics.

Level Protocol. Methods #processMetaLevel and #objectMetaLevel return the
height of the currently executing meta-level action or condition as in the
meta-level tower model. The #processMetaLevel returns the process-wide
meta-level height, while the #objectMetaLevel returns the number of meta-
levels that have been triggered due to events of the reflectogram’s target
object.

Identity Protocol. Finally, methods #at:, #at:put: and #perform:withArgs: provide
read, write (for slots) and execution reflective facilities (for message sending)
for the target object. These methods are implemented separately from
core reflection and their corresponding message sends are received by the
reflectopoint rather than the target object. This way the identity of the
receiver of reflective methods is controlled as was described in Section 2.5.

A usage example of the reflectogram is depicted on Script 10 where we solve
the meta-recursion problem that was described in Section 2.4 (Script 5) by
explicitly controlling the meta-level execution flow:

13

Script 10: Solving the meta-recursion problem with the reflectogram

1 Reflectogram
2 on: anObject
3 for: MessageReceived
4 when: [:reflectopoint | countingFlag = true]
5 do: [:reflectopoint |
6 reflectopoint disable.
7 anObject incrementMessageCounter.
8 reflectopoint returnValue:
9 reflectogram defaultAction.

10 reflectopoint enable.
11]

Lines 1 to 3 of Script 10 register the MessageReceived event for the instance
anObject. On line 4 — as before — a trivial condition is registered checking a
message-counting flag. Then on lines 5 to 11 a meta-action is registered for
the MessageReceived event. On line 6 the reflectopoint is explicitly disabled
thus temporarily allowing message sends to be received by anObject without
interception. On line 7 the message #incrementCounter is send to anObject without
resulting in an infinite recursion since the reflectopoint has been disabled. Then
on lines 8 to 9 the value that will be returned to the base-level is set to the default
semantic action for MessageReceived events. This default action corresponds to
the evaluation of whichever message send (received by anObject) was intercepted
and triggered the meta-jump. Finally, on line 10 the reflectopoint is re-enabled
before returning control to the base-level, as to be able to intercept further
message sends to anObject.

4.3. Handling Scoping, Reifications and Inheritance
In Figure 5 although each ReflectoGram is still associated with a single target

object (as with our initial model) it has now multiple Targets (for the same
object) which differentiate between different events, scopes, hierarchy policies etc.
This class Target introduces one level of indirection between the ReflectoGram
and the targetedObject in order to address the issues identified in Section 3
concerning scope, inheritance and first-class entities.

Target
- targetedObject
- associatedEvent
- scope
- hierarchy
- reification
…

Mode

Scope HierarchyReification

Flat

Inhertitance

Instance

EntityMultiScope

SingleScope

*1
Event

1 1

MsgSend MsgReceived IvRead […]

Figure 6: Different modes for targets of the reflectogram

14

In Figure 6, we see that each target apart from each association with exactly
one event, stores multiple Mode objects (scope, hierarchy, reification slots) that
disambiguate the exact semantics of an <event,target> pair according to the
following rules:

Scope (issue described in Section 3.1)

SingleScope Treat the target as a single logical scope (even if this is a
composite scope). For example, in Script 7b, the class of line 1 will
be treated as a single logical scope comprised of a set of methods.

MultiScope Treat the target as a set of runtime entities. For example,
in Script 7b, the class of line 1 will be treated as a set of its instances,
and trigger the PassedAsArg event whenever (from multiple scopes)
an object of the specific class is passed as an argument.

By Default Treat the target with default scoping mode defined in the
event itself. For example, a PassedAsArg event can always be a multi-
scope event (concerning only sets of runtime objects and not scopes).
This option partially solves the problem by making the convention
explicit.

Reification (issue described in Section 3.2)

Instance Treat the target as an instance (i.e., if it is first-class) and not
as a set of either scopes or other instances. For example, in Script 8,
the class is treated as a terminal instance to simulate the ObjectCreation
event.

Entity Treat the target as the semantical entity it represents (i.e., a class
as a set of objects or methods, a package as a set of classes etc.),
following the scoping rules (above).

By Default We believe that treating all reifications as entities is the most
logical default behavior. Nevertheless, as we show in Section 3.2 it is
useful to allow the programmer to override this.

Hierarchy (issue described in Section 3.3)

Flat Ignore the class hierarchy and operate only on the set of either
methods or objects belonging to the target.

Inheritance Propagate inheritance rules to the hierarchy as is described
in Section 3.3.

By Default We believe that by default all targets should be treated as
Flat to avoid surprises while propagating reflective behavior, but
nevertheless allow end-users to override it if necessary.

From the point of view of the end-user the above model can be integrated in
an extended event registration API as follows:

15

Script 11: Extended Event Registration: Handling different modes
programmatically

1 Reflectogram
2 on: aTarget
3 as: Entity −> Flat
4 for: PassedAsArg "class inheriting from MultiScopedEvent"
5 limitedTo: [:method | "conditon limiting installation in a set of methods"|]
6 when: [:reflectopoint | "reflective condition"]
7 do: [:reflectopoint | "reflective action"]

Here, the programmer can optionally set the policies for reification and
hierarchy (line 3). Furthermore, scoping (line 4) is made explicit by organizing
events into scoping hierarchies (i.e., the PassedAsArg inherits from MultiScopedE-
vent). Finally, the limitedTo: directive on line 5 can programmatically restrict the
propagation of the reflective behavior (in a set of methods) even in the case that
an inheritance mode is set as the hierarchy policy.

5. The Reflectogram in Action

This section presents the implementation of a non-trivial tracing framework
where the code that will be traced is not known a priori (i.e., is unanticipated)
but is being instrumented on the fly at runtime. Message-based profiling [1], for
example, uses such a tracing approach to approximate execution time of selected
methods. Through this example, we aim to show that all five dimensions of
control co-occur in practical applications and a unified abstraction (such as the
reflectogram) is warranted. In the code snippets below the extended revised
event registration described in Section 4.3 is used, while the event MsgSend
inherits here from SingleScopedEvent.

Figure 7 shows the core classes of our tracing framework, which include:

CallGraph. The entry point of the output call graph of our tracing process.

CallGraphNode. Individual nodes of the output call graph holding the actual
meta-information that has been traced. For our framework, this meta-
information includes: the receiver of a message send, its class, the selector
and the arguments passed along with the message call.

ExecutionTrace. Users subclass ExecutionTrace adding the entry point symbol
of the code to be traced by invoking the inherited #run: aSymbol method
(where aSymbol corresponds to a method name). Also inherited are the
corresponding output call graph and the process (i.e., green thread) where
the tracing of a targeted method will take place.

CallTrace. Finally, CallTrace implements the condition and send callbacks
(Script 12) which are bound to traced objects at runtime. These callbacks
then delegate meta-level control to methods #inTracingScope:, #addGraphN-
ode:, #executeNode: and #return:, respectively (Script 13).

16

ExecutionTraceCallGraph 11 CallTrace*1

CallGraphNode
*

1
+ conditionCallback
+ sendCallback
[…]
+ inTracingScope: reflectogram
+ addGraphNode: reflectogram
+ executeNode: reflectogram
+ return: reflectogram

- tracingProcess
- callGraph
+ run: aSymbol

UserTrace1 UserTrace2 [...]

- selector
- class
- receiver
- args
[…]

Figure 7: Core classes of our tracing framework

As seen on lines 2,7,8 and 9 of Script 12 since the reflectogram and its points
are reified as first class entities they can be passed as arguments beyond the
scope of conditions or meta-actions. On line 2, a reflectopoint is passed to
the #inTracingScope: method to determine if the meta-event that triggered the
conditionCallback happened inside our tracing process or not. On line 7, it is
passed to #addGraphNode: to gather the meta-information needed to update the
call graph. Then, on line 8 it is passed to #executeNode: to perform the default
base-level action and gather its return value. Finally, on line 9 it is passed
to the #return: method which resets both the call graph and the reflectogram
appropriately for further processing.

Script 12: Tracing Callbacks

1 conditionCallback
2 ^ [:reflectopoint | self inTracingScope: reflectopoint]
3

4 sendCallback
5 ^ [:reflectopoint |
6 reflectopoint disable.
7 (self addGraphNode: reflectopoint)
8 returnValue: (self executeNode: reflectopoint).
9 self return: reflectopoint]

On Script 13 we see these delegate methods in more detail:

17

Script 13: Meta-control methods using the Reflectogram

1 inTracingScope: reflectopoint
2 ^ reflectopoint reifications process =
3 tracingProcess & (reflectopoint processMetaLevel = 1)
4

5 addGraphNode: reflectopoint
6 ^ callGraph
7 addSelector: reflectopoint reifications message selector
8 forClass: (Reflectogram
9 object: reflectopoint reifications receiver

10 perform: #class
11 withArguments: #())
12 rcvr: reflectopoint reifications receiver
13 args: reflectopoint reifications message arguments
14

15 executeNode: reflectopoint
16 newCallTrace := self class
17 newWithGraph: callGraph
18 forProcess: tracingProcess.
19 ReflectoGram
20 on: reflectopoint reifications receiver
21 as: Entity −> Flat
22 for: MsgSend
23 limitedTo: [:method | true]
24 when: [:rpoint | newCallTrace conditionCallback value: rpoint]
25 do: [:rpoint | newCallTrace sendCallback value: rpoint].
26 ^ reflectopoint
27 returnValue: reflectopoint defaultAction
28

29 return: reflectopoint
30 callGraph return.
31 reflectopoint enable.

Method #inTracingScope: (lines 1 to 3) the level protocol of the reflectopoint is
used (line 3) in order to determine whether we are intercepting a method call
that originated from the base-level of our tracing process (processMetaLevel
= 1). If not #inTracingProcess: will return false and the corresponding meta-
action (lines 5 through 9 on Script 12) will not be invoked.

Method #addGraphNode: (lines 5 through 13) the reification slot of the reflec-
topoint is used in order to gather meta-information about the intercepted
call and update the call graph. The reification slot stores event-specific
information for each meta-jump. This information can include: the sender,
receiver, arguments and context of message sends, name and values of
variables accessed, the active process, the targeted object, the type of the
event etc. Method calls are intercepted every time a message is sent to
a new receiver (from within a traced object). On lines 8 through 11 the
identity protocol is used in order to extract the class of this new receiver
and avoid the meta-recursion problem in case this receiver was previously
being traced.

Method #executeNode: (lines 15 to 27) a new call trace is being created and is
being assigned to the new receiver at runtime via the spatial protocol (lines

18

19 to 25) using the extended event registration API. Then on lines 26 to
27 the placement protocol is being used to perform the default base-level
action and gather its return value. Since the base-level action is a method
call to a newly-traced object it will re-trigger the meta-level for all new
method calls from within its scope before returning.

Method #return: (lines 29 to 31) is the equivalent of an after-action. Here we
update the call graph (to point to the node that we have previously added)
and re-enable the reflectopoint (line 31) for our traced object through
the temporal protocol. The reflectopoint had been previously disabled for
convenience (in order to avoid unnecessary meta-jumps) on the beginning
of the meta-action callback (line 7, Script 12).

6. Implementation

Previously, the prototype implementation of our model for the reflectogram
was part of a dedicated virtual machine targeting the Pharo platform: the
metaStackVM4 [18]. Essentially, through VM support, instrumentation checks
can be performed on the objects themselves while they are being interpreted
by the underlying execution environment. We implemented the metaStackVM
by extending the standard Stack VM5 [16] of Pharo, in Slang [10]. Slang uses
a subset of the Smalltalk syntax with procedural semantics that can be easily
translated to C.

Currently, we report on experimentations made with a new implementation
of our proposition using byte-code instrumentation, on top of Reflectivity6. This
fact made our current implementation compatible with a production just-in-time
VM, and allowed us to further discuss implementation options comparing to our
previous results. Reflectivity itself is based on the Gepetto model [24, 7] which
uses lower-level abstractions (such as links and hooksets) apart from that of meta-
objects in order to provide a stricter separation of concerns between handling of
events (hookset responsibility) and meta-level delegation (link responsibility).
More specifically, byte-code instrumentation in Reflectivity is performed at
runtime (as in [24]) using extension modules of the Opal compiler7 allowing us
to define:

• Sets of related base-level events that are described by reified objects (such
as abstract syntax nodes).

• Meta-objects (any object can play this role) to which control will be
delegated at runtime.

4http://ss3.gemstone.com/ss/mSVM.html
5https://ci.inria.fr/pharo/view/VM/job/PharoSVM/
6http://scg.unibe.ch/research/reflectivity
7http://scg.unibe.ch/research/OpalCompiler

19

• A link between the events described by the AST nodes and the meta-object.
Links can dynamically control the activation/deactivation of meta-level
behavior.

Our own model does not cover (but uses) these concerns to offer higher-level
abstractions that are more suitable for end-users. The rationale for our current
choice to base our solution on top of a byte-code instrumentation framework is
twofold. On the one hand, a customized VM (as in our previous implementation)
is not a viable solution in the long run, unless the extensions become part of
the vendor’s VM for the platform. On the other hand, our previous experiment
depended on a JIT-less VM which puts a performance penalty when compared
to the state of the art. Both implementations of the reflectogram are available
at http://ss3.gemstone.com/ss/mSVM.html together with the benchmarks presented in
this section.

We evaluated both solutions though a micro-benchmark to measure the over-
head introduced to normal execution with and without reifying the reflectogram.
The benchmark is based on Tanter et al. [30] and measures the slowdown
introduced for 106 messages sent to a test object when a) no instrumentation
is present b) instrumentation is loaded but is disabled c) instrumentation is
enabled d) instrumentation is enabled and the reflectogram is being reified.

For each platform, we used the most direct messaging event depending on
the implementation. For example the metaStackVM uses the MessageReceive
event send for the test object itself (since the VM has access to the runtime
instances). Our current implementation uses the MessageSend event, which is a
messaging event from within a specific scope (i.e., for a method that is being
instrumented).

We present the results relative to normal execution for each platform individ-
ually measuring the slowdown introduced.

We report average execution times µ = 1
N

∑N
i=1 ti in milliseconds (ms) over

100 runs of the bechmarks (each run comprising 106 message sends), using the

standard deviation σ =
√

1
N

∑N
i=1(ti − µ)2 as a measure of uncertainty/error

for the measurements.
The average slowdown8 is calculated as a derived quantity z of two directly

measured variables x, y, where z = x/y, whence the standard deviation of z can

be calculated as a propagation error using the formula: ∆z
z =

√(
∆x
x

)2
+
(

∆y
y

)2

.

Where z is the the derived quantity (slowdown) and x, y the directly measured
averages of the benchmarks.

In order to avoid skewing the results by the warmup time of the JIT we
followed a similar procedure as the one described by J. Ressia for Bifrost [23]
namely making sure that:

• Benchmarked methods are created in advance.

8reported as x times the speed of normal execution

20

http://ss3.gemstone.com/ss/mSVM.html

106 msg-sends over 100 runs – SLOWDOWN (Bytecode-JIT)
Case Time µ (ms) Time σ (ms) Slowdown µ Slowdown σ
No instrumentation 9.00 ms 0.00 ms 1.00 0.00
Disabled instrumentation 9.00 ms 0.00 ms 1.00 0.00
Before-hook 11.02 ms 0.14 ms 1.22 0.01
Instead-hook 77.91 ms 0.97 ms 8.66 0.11
Reflectogram Reification 188.87 ms 6.73 ms 20.98 0.75
Reflectogram / Instead – – 2.42 0.09

Table 1: Instrumentation Benchmark with Bytecode Instrumentation in the presence of a JIT

106 msg-sends over 100 runs – SLOWDOWN (mSVM-no-JIT)
Case Time µ (ms) Time σ (ms) Slowdown µ Slowdown σ
No instrumentation 48.10 ms 0.52 ms 1.00 0.00
Disabled instrumentation 47.52 ms 0.90 ms 0.99 0.02
Enabled instrumentation 414.08 ms 22.07 ms 8.61 0.48
Reflectogram Reification 658.08 ms 69.91 ms 13.68 1.46
Reflectogram / Instead – – 1.59 0.19

Table 2: Instrumentation Benchmark with a dedicated VM, inline-caching no-JIT

• Method lookup tables are filled by repeated execution before the measure-
ments.

• Measured methods compute constant time arithmetic operations for which
there are no further optimisations provided by the VM.

As we see in Tables 1 and 2 when instrumentation is loaded into the en-
vironment but is disabled for the benchmarked object, there is no additional
overhead. This is important for practical reasons to avoid slowing down the
whole system when instrumenting only a part of it [30]. For example, implicit
reflection in both cases introduces an 8.66x (for bytecode instrumentation with
Reflectivity) and 8.61x overhead (for our non-JIT customized VM) but only for
the benchmarked object operating in an instead mode with reifications9. In fact
for bytecode instrumentation with Reflectivity when only a before directive is
used10 without any reifications for events the slowdown introduced can be as
low as 1.22x.

But while adding the reification of the reflectogram to the metaStackVM
introduces a 1.59x slowdown compared to implicit reflection without such reifica-
tion, in the case of bytecode instrumentation the additional slowdown for using
the reflectogram is 2.42x. Nevertheless the added benefit of having the reflec-
togram operating on top of the vendor VM (in the presence of JIT compilation)

9meaning that the reflective action fully replaces base-level functionality
10meaning that the reflective action is executed before the base-level functionality, but not

replacing it

21

with a faster underlying infrastructure allows for further optimizations [15] that
we have not yet explored. Our results point us towards a synergetic approach,
where both bytecode instrumentation and the VM are involved.

7. Related Work

In Section 2 we presented five dimensions of meta-control that have been pre-
viously treated separately in literature. Table 3 summarizes the facilities of their
corresponding implementations and compares them with our implementations of
the reflectogram.

Iguana/J Reflex Gepetto Gepetto-Ext
[21, 22] [30] [24] [7]

Temporal X X(partially) X X
Spatial X X X X

Placement × X X X
Level × × × X

Identity × × × ×

AmbientTalk Bifrost Reflectogram
[17] [23]

Temporal X X X
Spatial X X X

Placement × X X
Level × × X

Identity X × X

Table 3: Comparison in terms of Meta-Control Facilities

While Iguana/J [21, 22] was the first to introduce unanticipated changes
(temporal control) and spatial control for the Java platform, it was Reflex [30]
that introduced partial behavioral reflection (supporting spatial, temporal and
placement control). On the other hand, due to implementation constraints
Reflex did not allow for dynamic definition of meta-level behavior at runtime as
did Iguana/J. This is in spite of the fact that analogous mechanisms predate
both Iguana/J and Reflex (such as the CLOS MOP), but do not distinguish
between the different dimensions of their facilities. These three types of control
(placement, spatial and temporal) were first available during runtime in Gepetto
for Smalltalk [24], with later extensions to the Gepetto implementation covering
level control [7]. Bifrost added an object-centric model to runtime reflection
expanding spatial control to execution runs [23]. AmbientTalk [17] was the first
mirror-based implementation specifically targeting implicit reflection and has
support for temporal, spatial and identity control.

Our own implementation manages to cover all five dimension of meta-control
through the reflectogram reification. It is close to Gepetto [24] but additionally
deals with identity control [7].

22

Aspect-Oriented Programming. As discussed in Section 2, the problems presented
in this paper have direct analogies to issues presented in AOP literature. In
the context of AOP, the dimensions of spatial, temporal and placement control
are embedded in the abstractions of aspects, namely: advices and join points.
Moreover, the recent proposal of execution levels [27, 28] solves the equivalent
problem of meta-recursion by avoiding aspect loops.

Subject and Context-Oriented Programming. Finally, as we discussed in Section
2.5, the problem of identity control is closely related to the ideas of both subject
and context-oriented programming [34, 33, 35]. These two paradigms deal with
variations of object behavior that conceptually do not depend on one specific
object. On the contrary these variations are linked to the general execution
context and its state. Our solution, instead of providing an implicit variation
of behavior on the target object, gives the programmer an alternative way to
explicitly access its reflective behavior. With identity control the meta-object
assumes the identity of the receiver of the reflective method, bypassing the
object’s control altogether. This basic approach can nevertheless be used to
build more elaborate abstractions.

Limitations. From a model perspective, our solution presents some limitations
compared to the model of Reflex or Gepetto, which are focused on extensibility.
These models introduce abstractions (such as links and hooksets) apart from that
of meta-objects in order to provide a stricter separation of concerns between event
handling (hookset responsibility) and meta-level delegation (link responsibility).
Other solutions such as Bifrost provide additional support for compound meta-
objects allowing for composition of meta-behavior. Our approach presents a
single unifying entity (the reflectogram) for meta-level control aiming at explicit
handling of control flow from within the meta-level itself.

From this perspective, the reflectogram is more appropriate as an end-user
abstraction rather than an implementor’s abstraction since it does not focus on
extensibility or composition. On the other hand, the reflectogram is described
through the Event-Condition-Action model which all implicit reflection schemes
(including Bifrost, Gepetto and Reflex) share and can thus be implemented - as
we showed through our current implementation - as an extension on top of them.

8. Conclusion

Our work presents five different dimensions of meta-control for implicit reflec-
tion that have been treated separately in literature, namely: temporal and spatial
control, placement control, level control and identity control. We discuss how
these dimensions interact with language semantics in class-based OO languages
in terms of: scoping, inheritance and first-class entities. We have proposed an
extended model for the reification of a previously purely descriptive notion – that
of the reflectogram [30] – arguing that such reification can unify the control
of meta-level execution in all five dimensions, while expressing properly the
underlying language semantics. We have also presented an additional prototype

23

implementation of this reification in the Pharo programming environment which
uses byte-code instrumentation - and is now compatible with a production VM
that integrates a JIT compiler. We have validated our approach through a case
study on unanticipated tracing.

In terms of future work, we would like to provide a formal semantic represen-
tation of the reflectogram and experiment with a more synergetic approach for
implementing it where both bytecode instrumentation and the VM are involved.
Finally we would like to provide benchmarks for larger examples and program-
ming tools in a way where the impact of the framework itself is measured (as in
our micro-benchmarks) rather than the slowdown of the meta-level application
logic.

9. Acknowledgments

The authors would like to thank Prof. Eric Tanter for his valuable feedback -
on the previous version of this work - regarding related literature in the context
of AOP and for helping us strengthen our presentation. We will also like to thank
our anonymous reviewers for their thorough work and constructive suggestions.
This work was partially sponsored by the European Smalltalk Users Group:
http://esug.org.

[1] Bergel, A., 2011. Counting messages as a proxy for average execution time
in Pharo. In: ECOOP 2011. Vol. 6813 of LNCS. Springer, pp. 533–557.

[2] Bracha, G., Ungar, D., 2004. Mirrors: Design principles for meta-level
facilities of object-oriented programming languages. In: OOPSLA 2004,
ACM SIGPLAN Notices. ACM Press, New York, NY, USA, pp. 331–344.
URL http://bracha.org/mirrors.pdf

[3] Brant, J., Foote, B., Johnson, R., Roberts, D., 1998. Wrappers to the rescue.
In: ECOOP 1998. Vol. 1445 of LNCS. Springer-Verlag, pp. 396–417.

[4] Cazzola, W., 2003. Remote method invocation as a first-class citizen. In:
Distributed Computing 16 (4), 287–306.
URL http://dx.doi.org/10.1007/s00446-003-0094-8

[5] Cazzola, W., Chiba, S., Ledoux, T., 2000. Reflection and meta-level archi-
tectures: State of the art and future trends. In: ECOOP 2000. Vol. 1964 of
LNCS. Springer-Verlag, pp. 1–15.
URL http://dl.acm.org/citation.cfm?id=646780.705788

[6] Chiba, S., Kiczales, G., Lamping, J., 1996. Avoiding confusion in metacircu-
larity: The Meta-helix. In: Futatsugi, K., Matsuoka, S. (Eds.), Proceedings
of ISOTAS ’96. Vol. 1049 of LNCS. Springer, pp. 157–172.
URL http://www2.parc.com/csl/groups/sda/publications/papers/Chiba-ISOTAS96/for-web.pdf

24

http://esug.org
http://bracha.org/mirrors.pdf
http://dx.doi.org/10.1007/s00446-003-0094-8
http://dl.acm.org/citation.cfm?id=646780.705788
http://www2.parc.com/csl/groups/sda/publications/papers/Chiba-ISOTAS96/for-web.pdf

[7] Denker, M., Suen, M., Ducasse, S., 2008. The Meta in meta-object archi-
tectures. In: Proceedings of TOOLS EUROPE 2008. Vol. 11 of LNBIP.
Springer-Verlag, pp. 218–237.
URL http://rmod.lille.inria.fr/archives/papers/Denk08b-Tools08-MetaContext.pdf

[8] Dittrich, K., Gatziu, S., Geppert, A., 1995. The active database management
system manifesto: A rulebase of ADBMS features. In: Sellis, T. (Ed.), Rules
in Database Systems. Vol. 985 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 1–17.
URL http://dx.doi.org/10.1007/3-540-60365-4_116

[9] Ferber, J., Oct. 1989. Computational reflection in class-based object-oriented
languages. In: Proceedings OOPSLA 1989, ACM SIGPLAN Notices. Vol. 24.
pp. 317–326.

[10] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A., Nov. 1997. Back
to the future: The story of Squeak, a practical Smalltalk written in itself.
In: Proceedings OOPSLA 1997. ACM SIGPLAN Notices, pp. 318–326.
URL http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html

[11] Kiczales, G., des Rivières, J., Bobrow, D. G., 1991. The Art of the Metaob-
ject Protocol. MIT Press.

[12] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W. G., 2001. An overview of AspectJ. In: Proceedings ECOOP 2001. No.
2072 of LNCS. Springer Verlag, pp. 327–353.

[13] Maes, P., Dec. 1987. Concepts and experiments in computational reflection.
In: Proceedings OOPSLA 1987, ACM SIGPLAN Notices, pp. 147–155.

[14] Maes, P., 1988. Issues in computational reflection. In: P. Maes, D. Nardi.
(Ed.), Meta-Level Architectures and Reflection. Elsevier Science Publishers
B.V. (North-Holland), pp. 21–35.

[15] Marr, S., Seaton, C., Ducasse, S., Jun. 2015. Zero-overhead metaprogram-
ming: Reflection and metaobject protocols fast and without compromises.
SIGPLAN Not. 50 (6), 545–554.
URL http://doi.acm.org/10.1145/2813885.2737963

[16] Miranda, E., 2008. Cog blog. Speeding up Croquet and Squeak with a new
open-source VM from Qwaq.
URL http://www.mirandabanda.org/cogblog/

[17] Mostinckx, S., Van Cutsem, T., Timbermont, S., Gonzalez Boix, E., Tanter,
E., De Meuter, W., May 2009. Mirror-based reflection in AmbientTalk.
Software Practice and Experience, 661–699.

[18] Papoulias, N., Dec. 2013. Remote debugging and reflection in resource
constrained devices. Thèse, Université des Sciences et Technologies de Lille
- Lille I.
URL http://tel.archives-ouvertes.fr/tel-00932796

25

http://rmod.lille.inria.fr/archives/papers/Denk08b-Tools08-MetaContext.pdf
http://dx.doi.org/10.1007/3-540-60365-4_116
http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html
http://doi.acm.org/10.1145/2813885.2737963
http://www.mirandabanda.org/cogblog/
http://tel.archives-ouvertes.fr/tel-00932796

[19] Papoulias, N., Denker, M., Ducasse, S., Fabresse, L., 2015. Reifying the
reflectogram: Towards explicit control for implicit reflection. In: Proceedings
of the 30th Annual ACM Symposium on Applied Computing. SAC ’15.
ACM, New York, NY, USA, pp. 1978–1985.
URL http://doi.acm.org/10.1145/2695664.2695883

[20] Toledo, R., Leger, P., Tanter, E., 2010. AspectScript: Expressive aspects for
the Web. In: Proceedings of the 9th International Conference on Aspect-
Oriented Software Development. AOSD ’10. ACM, New York, NY, USA,
pp. 13–24

[21] Redmond, B., Cahill, V., 2000. Iguana/J: Towards a dynamic and efficient
reflective architecture for Java. In: Proceedings of European Conference
on Object-Oriented Programming, workshop on Reflection and Meta-Level
Architectures.

[22] Redmond, B., Cahill, V., 2002. Supporting unanticipated dynamic adap-
tation of application behaviour. In: ECOOP 2002. Vol. 2374 of LNCS.
Springer-Verlag, pp. 205–230.

[23] Ressia, J., 2012. Object-centric reflection. Ph.D. thesis, Institut fur Infor-
matik und angewandte Mathematik. University of Bern.

[24] Röthlisberger, D., Denker, M., Tanter, É., 2007. Unanticipated partial
behavioral reflection. In: Advances in Smalltalk — Proceedings of 14th
International Smalltalk Conference (ISC 2006). Vol. 4406 of LNCS. Springer,
pp. 47–65.
URL http://rmod.lille.inria.fr/archives/papers/Roet07b-ISC06-UPBReflection.pdf

[25] Röthlisberger, D., Denker, M., Tanter, É., Jul. 2008. Unanticipated partial
behavioral reflection: Adapting applications at runtime. Journal of Com-
puter Languages, Systems and Structures 34 (2-3), 46–65.
URL http://rmod.lille.inria.fr/archives/papers/Roet08a-COMLAN-UPBReflectionJournal.pdf

[26] Smith, B. C., 1982. Reflection and semantics in a procedural programming
language. Ph.D. thesis, MIT.

[27] Tanter, E., 2010. Execution levels for aspect-oriented programming. In:
Proceedings of the 9th International Conference on Aspect-Oriented Software
Development. AOSD ’10. ACM, New York, NY, USA, pp. 37–48.
URL http://doi.acm.org/10.1145/1739230.1739236

[28] Tanter, E., Figueroa, I., Tabareau, N., Feb. 2014. Execution levels for
aspect-oriented programming: Design, semantics, implementations and
applications. Science of Computer Programming 80, 311–342.
URL http://dx.doi.org/10.1016/j.scico.2013.09.002

[29] Tanter, É., Noyé, J., Sep. 2005. A versatile kernel for multi-language AOP.
In: Proceedings of the 4th ACM SIGPLAN/SIGSOFT Conference on

26

http://doi.acm.org/10.1145/2695664.2695883
http://rmod.lille.inria.fr/archives/papers/Roet07b-ISC06-UPBReflection.pdf
http://rmod.lille.inria.fr/archives/papers/Roet08a-COMLAN-UPBReflectionJournal.pdf
http://doi.acm.org/10.1145/1739230.1739236
http://dx.doi.org/10.1016/j.scico.2013.09.002

Generative Programming and Component Engineering (GPCE 2005). Vol.
3676 of LNCS. Tallin, Estonia.

[30] Tanter, É., Noyé, J., Caromel, D., Cointe, P., Nov. 2003. Partial behavioral
reflection: Spatial and temporal selection of reification. In: Proceedings of
OOPSLA 2003, ACM SIGPLAN Notices. pp. 27–46.
URL http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf

[31] Wand, M., Friedman, D., 1988. The Mystery of the Tower Revealed: A
Non-Reflective Description of the Reflective Tower. In: P. Maes., D. Nardi,
(Eds.), Meta-level Architectures and Reflection. pp. 111–134.

[32] Zhuang, Y., Chiba, S., 2013. Method slots: Supporting methods, events,
and advices by a single language construct. In: Proceedings of the 12th
Annual International Conference on Aspect-oriented Software Development.
AOSD ’13. ACM, New York, NY, USA, pp. 197–208.

[33] M.L. Gassanenko. Context-oriented programming. In euroForth’98, Schloss
Dagstuhl, Germany, April 1998.

[34] William Harrison and Harold Ossher. Subject-oriented programming (a
critique of pure objects). In: Proceedings of OOPSLA 1993, ACM SIGPLAN
Notices, volume 28, pages 411–428.

[35] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented
programming. Journal of Object Technology, 7(3), 2008.

27

http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf

	Introduction
	Dimensions of Meta-Control
	Temporal Control
	Spatial Control
	Placement Control
	Level Control
	Identity Control

	Meta-control and Language Semantics
	Meta-control and Scoping Semantics
	Meta-control and First-class entities
	Meta-control and Inheritance
	Summary

	Reifying the Reflectogram
	Reifying the Reflectogram
	The Reflectogram API
	Handling Scoping, Reifications and Inheritance

	The Reflectogram in Action
	Implementation
	Related Work
	Conclusion
	Acknowledgments

