
Exercise 1

Generating Bytecode

Introduction

Generating bytecode can be done withIRBuilder. The following exercise uses the IRBuilder of Squeak
3.7.

Here is the the example from the lecture again:

irMethod:= IRBuilder new
rargs: #(self); "receiver and args"
pushTemp: #self;
send: #truncated;
returnTop;
ir.

aCompiledMethod := irMethod compiledMethod.

The variableaCompiledMethodnow contains the generated compiled method. This method can be
executed:

aCompiledMethod valueWithReceiver:3.5 arguments: #()

1.1 Expressions

With the help of IRBuilder, generate a method that calculates the expression(3 + 4) factorial and
returns the result.

1.2 Parameters

Change the code that you wrote for the first exercise to use parameters instead of hard coded numbers. So
in the end you will have a method that requires two arguments. If executed with

aCompiledMethod valueWithReceiver: nil arguments: #(3 4)

the result should be 7.

1.3 Loops

The Squeak bytecode has support for jumps. Jumps are used to implement conditionals and loops in an
efficient way.

Generate a compiledMethod withIRBuilder that outputs the numbers 1 to 10 on the Transcript
window.

1

1.4 Instance Variables

Generate a method that adds two instance variables and returns the result. Test the code by running it on a
Point, e.g., 3@4.

1.5 Installing a Method in a Class

Find a way to add the method from Exercise 4 to the class Point with the namereturnSum . After that,
the following test should be green:

testReturnAdd
self assert: (1@2) returnSum = 3.
self assert: (3@4) returnSum = 7.

2

Exercise 2

Bytecode Analysis

2.1 Counting Number of Executed Bytecodes

Look at the methodtallyInstructions: in the classContextPart (class-side):

"This method uses the simulator to count the number of occurrences of
each of the Smalltalk instructions executed during evaluation of aBlock.
Results appear in order of the byteCode set."
| tallies |
tallies := Bag new.
thisContext sender
runSimulated: aBlock
contextAtEachStep:
[:current | tallies add: current nextByte].
ˆtallies sortedElements

"ContextPart tallyInstructions: [3.14159 printString]"
ˆanArray at: 2

The methodrunSimulated: aBlock contextAtEachStep: [:current— ...] executeaBlock and for
each bytecode executed in this block or in called methods, the second argument is evaluated with an in-
stance of one of the subclasses ofContextPart as the argument.

Write a similar method namednumberOfBytecodeExecuted: aBlock that returns the number of
bytecode executed when evaluating the provided block. For instance:

ContextPart numberOfBytecodeExecuted: [3.14159 printString]
==> 1029

In total, the expression3.14159 printString is evaluated by executing 1029 bytecodes.

2.2 Methods Coverage Analysis

Getting information about methods that are currently needed to perform a computation is often difficult to
obtain with languages like Java. However this information can easily retrieved in Smalltalk.

Number of Methods Invoked

Create a methodnumberOfInvokedMethods: aBlock that return the number of all the methods invoked
whenaBlock is evaluated.

ContextPart numberOfInvokedMethods: [3.14159 printString]
==> 38

3

Set of Methods Covered

We are now interested in the methods name.

ContextPart methodCovered: [3.14159 printString]
==> #(’ContextPart class>>DoIt’ ’Object>>printString’

’Object>>printStringLimitedTo:’ ...)

Bytecode Covered

Let’s focus on bytecode. When a method is invoked, not all the bytecode contained in this method
are executed. For instance, when executing3.14159 printString the methodon: defined in the class
WriteStream is executed, but only 90% of its bytecode are executed.

ContextPart bytecodeCovered: [3.14159 printString]
==> #(#(’WriteStream>>on:’ 90) #(’LimitedWriteStream>>nextPut:’ 69)
#(’Object>>species’ 100) ...)

4

