
VMs,
Interpreters,

JIT & Co

A First
Introduction

Marcus Denker

Marcus Denker

Overview

• Virtual Machines: How and Why
– Bytecode
– Garbage Collection (GC)

• Code Execution
– Interpretation
– Just-In-Time
– Optimizing method lookup
– Dynamic optimization

Marcus Denker

Caveat

• Virtual Machines are not trivial!

• This lecture can only give a very high-level overview

• You will not be a VM Hacker afterwards ;-)

• Many slides of this talk should be complete lectures
(or even courses)

Marcus Denker

Virtual Machine: What’s that?

• Software implementation of a machine

• Process VMs
– Processor emulation (e.g. run PowerPC on Intel)

• FX32!, MacOS 68k, powerPC
– Optimization: HP Dynamo
– High level language VMs

• System Virtual Machines
– IBM z/OS
– Virtual PC

Marcus Denker

High Level Language VM

• We focus on HLL VMs
• Examples: Java, Smalltalk, Python, Perl....

• Three parts:
– The Processor

• Simulated Instruction Set Architecture (ISA)
– The Memory: Garbage Collection
– Abstraction for other OS / Hardware (e.g, I/O)

• Very near to the implemented language
• Provides abstraction from OS

Marcus Denker

The Processor

• VM has an instruction set. (virtual ISA)
– Stack machine
– Bytecode
– High level: models the language quite directly

• e.g, “Send” bytecode in Smalltalk

• VM needs to run this Code
• Many designs possible:

– Interpreter (simple)
– Threaded code
– Simple translation to machine code
– Dynamic optimization (“HotSpot”)

Marcus Denker

Garbage Collection

• Provides a high level model for memory
• No need to explicitly free memory
• Different implementations:

– Reference counting
– Mark and sweep
– Generational GC

• A modern GC is *very* efficient
• It’s hard to do better

Marcus Denker

Other Hardware Abstraction

• We need a way to access Operating System APIs
– Graphics
– Networking (TCP/IP)
– Disc / Keyboard....

• Simple solution:
– Define an API for this Hardware
– Implement this as part of the VM (“Primitives”)
– Call OS library functions directly

Virtual Machine: Lessons learned

• VM: Simulated Machine
• Consists of

– Virtual ISA
– Memory Management
– API for Hardware/OS

• Next: Bytecode

Marcus Denker

Bytecode

• Byte-encoded instruction set
• This means: 256 main instructions
• Stack based

• Positive:
– Very compact
– Easy to interpret

• Important: The ISA of a VM does not need to be
Bytecode.

Marcus Denker

Compiling to Bytecode

1 + 2

76 77 B0 7C

Program Text

Compiler

Bytecode

Marcus Denker

Example: Number>>asInteger

• Smalltalk code:

• Symbolic Bytecode

	

 ^1 + 2

<76> pushConstant: 1
<77> pushConstant: 2
<B0> send: +
<7C> returnTop

Marcus Denker

Example: Java Bytecode

• From class Rectangle
public int perimeter()

0: iconst_2
1: aload_0 “push this”
2: getfield#2 “value of sides”
5: iconst_0
6: iaload
7: aload_0 2*(sides[0]+sides[1])
8: getfield#2
11: iconst_1
12: iaload
13: iadd
14: imul
15: ireturn

Marcus Denker

Difference Java and Squeak

• Instruction for arithmetic
– Just method calls in Smalltalk

• Typed: special bytecode for int, long, float
• Bytecode for array access

• Not shown:
– Jumps for loops and control structures
– Exceptions (java)
–

Marcus Denker

Systems Using Bytecode

• USCD Pascal (first, ~1970)
• Smalltalk
• Java
• PHP
• Python

• No bytecode:
– Ruby: Interprets the AST

Bytecode: Lessons Learned

• Instruction set of a VM
• Stack based
• Fairly simple

• Next: Bytecode Execution

Marcus Denker

Running Bytecode

• Invented for Interpretation
• But there are faster ways to do it

• We will see
– Interpreter
– Threaded code
– Translation to machine code (JIT, Hotspot)

Marcus Denker

Interpreter

• Just a big loop with a case statement

• Positive:
– Memory efficient
– Very simple
– Easy to port to new machines

• Negative:
– Slooooooow...

while (1) {
	

 bc = *ip++;
	

 switch (bc) {
	

 	

 ...
	

 	

 case 0x76:
	

 	

 	

 *++sp = ConstOne;
	

 	

 	

 break;
	

 	

 ...
	

 }
}

Marcus Denker

Faster: Threaded Code

• Idea: Bytecode implementation in memory has
Address

• Pro:
– Faster
– Still fairly simple
– Still portable
– Used (and pioneered) in Forth.
– Threaded code can be the ISA of the VM

	

push1:
	

 *++sp = ConstOne
	

 goto *ip++;
push2:
	

 *++sp = ConstTwo
	

 goto *ip++;

Bytecode Addresses

translate

Marcus Denker

Next Step: Translation

• Idea: Translate bytecode to machine code

• Pro:
– Faster execution
– Possible to do optimizations
– Interesting tricks possible: Inline Caching (later)

• Negative
– Complex
– Not portable across processors
– Memory

Bytecode Binary Code

translate

Marcus Denker

Simple JIT Compiler

• JIT = “Just in Time”
• On first execution: Generate Code
• Need to be very fast

– No time for many code optimizations
• Code is cached (LRU)

• Memory:
– Cache + implementation JIT in RAM.
– We trade memory for performance.

Bytecode Execution: Lessons Learned

• We have seen
– Interpreter
– Threaded Code
– Simple JIT

• Next: Optimizations

Marcus Denker

Optimizing Method Lookup

• What is slow in OO virtual machines?

• Overhead of Bytecode Interpretation
– Solved with JIT

• Method Lookup
– Java: Polymorph
– Smalltalk: Polymorph and dynamically typed
– Method to call can only be looked up at runtime

Marcus Denker

Example Method Lookup

• A simple example:

• The method “+” executed depends on the receiving
object

array := #(0 1 2 2.5).

array collect: [:each | each + 1]

Marcus Denker

Method Lookup

• Need to look this up at runtime:
– Get class of the receiver
– if method not found, look in superclass

Code for lookup
(in the VM)....

lookup(obj, sel)
....

Binary Code
(generated by JIT)

Code of Method
Found

Marcus Denker

Observation: Yesterday’s Weather

• Predict the weather of tomorrow: Same as today
• Is right in over 80%

• Similar for method lookup:
– Look up method on first execution of a send
– The next lookup would likely get the same method

• True polymorphic sends are seldom

Marcus Denker

Inline Cache

• Goal: Make sends faster in many cases
• Solution: remember the last lookup

• Trick:
– Inline cache (IC)
– In the binary code of the sender

Marcus Denker

Inline Cache: First Execution

....
lookup(obj, sel)
....

Binary Code
(generated by JIT)

First Call:

1) lookup the method

Marcus Denker

Inline Cache: First Execution

....
lookup(obj, sel)
....

Binary Code
(generated by JIT)

First Call:

1) lookup the method

Code of Method

Marcus Denker

Inline Cache: First Execution

....
lookup(obj, sel)
....

Binary Code
(generated by JIT)

First Call:

1) lookup the method
2) generate test preamble

Code of Method

check receiver
type

Marcus Denker

Inline Cache: First Execution

....
call preamble
....

Binary Code
(generated by JIT)

First Call:

1) lookup the method
2) generate test preamble
3) patch calling method

Code of Method

check receiver
type

Marcus Denker

Inline Cache: First Execution

....
call preamble
....

Binary Code
(generated by JIT)

First Call:

1) lookup the method
2) generate test preamble
3) patch calling method
4) execute method and return

Code of Method

check receiver
type

Marcus Denker

Inline Cache: Second Execution

....
call preamble
....

Binary Code
(generated by JIT)

Second Call:

Code of Method

check receiver
type

normal
lookup

wrong

- we jump directly to the test
- If test is ok, execute the method
- If not, do normal lookup

Marcus Denker

Limitation of Simple Inline Caches

• Works nicely at places were only one method is
called. “Monomorphic sends”. >80%

• How to solve it for the rest?

• Polymorphic sends (<15%)
– <10 different classes

• Megamophic sends (<5%)
– >10 different classes

Marcus Denker

Example Polymorphic Send

• This example is Polymorphic.

• Two classes: Integer and Float

• Inline cache will fail at every send
• It will be slower than doing just a lookup!

array := #(1 1.5 2 2.5 3 3.5).

array collect: [:each | each + 1]

Marcus Denker

Polymorphic Inline Caches

• Solution: When inline cache fails, build up a PIC

• Basic idea:
– For each receiver, remember the method found
– Generate stub to call the correct method

Marcus Denker

PIC

....
call pic
....

Binary Code
(generated by JIT)

Code of Method
(Float)

check receiver
type

Code of Method
(Integer)

check receiver
type

If type = Integer

 jump
If type = Float

 jump
else

 call lookup

Marcus Denker

PIC

• PICs solve the problem of Polymorphic sends
• Three steps:

– Normal Lookup / generate IC
– IC lookup, if fail: build PIC
– PIC lookup

• PICs grow to a fixed size (~10)
• After that: replace entries

• Megamorphic sends:
– Will be slow
– Some systems detect them and disable caching

Optimizations: Lessons Learned

• We have seen
– Inline Caches
– Polymorphic Inline Caches

• Next: Beyond Just-In-Time

Marcus Denker

Beyond JIT: Dynamic Optimization

• Just-In-Time == Not-Enough-Time
– No complex optimization possible
– No whole-program-optimization

• We want to do real optimizations!

Marcus Denker

Excursion: Optimizations

• Or: Why is a modern compiler so slow?

• There is a lot to do to generate good code!
– Transformation in a good intermediate form (SSA)
– Many different optimization passes

• Constant subexpression elimination (CSE)
• Dead code elimination
• Inlining

– Register allocation
– Instruction selection

Marcus Denker

State of the Art: HotSpot et. al.

• Pioneered in Self
• Use multiple compilers

– Fast but bad code
– Slow but good code

• Only invest time were it really pays off
• Here we can invest some more

• Problem: Very complicated, huge warmup, lots of
Memory

• Examples: Self, Java Hotspot, Jikes

Marcus Denker

PIC Data for Inlining

• Use type information from PIC for specialisation
• Example: Class Point

...
lookup(rec, sel)
....

Binary Code
(generated by JIT)

CarthesianPoint>>x
	

 ^x

PolarPoint>>x
	

 “compute x from rho and theta”

Marcus Denker

Example Inlining

• The PIC will be build

...
call pic
....

Binary Code
(generated by JIT)

If type = CarthesianPoint

 jump
If type = PolarPoint

 jump
else

 call lookup

The PIC contains
type Information!

Marcus Denker

Example Inlining

...
if type = cartesian point

 result ← receiver.x
else if type = polar point

 result ← receiver.rho * cos(receiver.theta)
else call lookup
...

• We can inline code for all known cases

Binary Code
(generated by JIT)

End

• What is a VM
• Overview about bytecode interpreter / compiler
• Inline Caching / PICs
• Dynamic Optimization

• Questions?

Marcus Denker

Literature

• Smith/Nair: Virtual Machines (Morgan Kaufman
August 2005). Looks quite good!

• For PICs:
– Urs Hölzle, Craig Chambers, David Ungar: Optimizing

Dynamically-Typed Object-Oriented Languages With
Polymorphic Inline Caches

– Urs Hoelzle. "Adaptive Optimization for Self: Reconciling
High Performance with Exploratory Programming." Ph.D.
thesis, Computer Science Department, Stanford
University, August 1994.

