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Overview

• Virtual Machines: How and Why
– Bytecode
– Garbage Collection (GC)

• Code Execution
– Interpretation
– Just-In-Time
– Optimizing method lookup
– Dynamic optimization
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Caveat

• Virtual Machines are not trivial!

• This lecture can only give a very high-level overview

• You will not be a VM Hacker afterwards ;-)

• Many slides of this talk should be complete lectures 
(or even courses)
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Virtual Machine: What’s that?

• Software implementation of a machine 

• Process VMs
– Processor emulation (e.g. run PowerPC on Intel)

• FX32!, MacOS 68k, powerPC
– Optimization: HP Dynamo
– High level language VMs

• System Virtual Machines
– IBM z/OS
– Virtual PC
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High Level Language VM

• We focus on HLL VMs
• Examples: Java, Smalltalk, Python, Perl....

• Three parts:
– The Processor 

• Simulated Instruction Set Architecture (ISA)
– The Memory: Garbage Collection
– Abstraction for other OS / Hardware (e.g, I/O)

• Very near to the implemented language
• Provides abstraction from OS
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The Processor

• VM has an instruction set. (virtual ISA)
– Stack machine
– Bytecode 
– High level: models the language quite directly

• e.g, “Send” bytecode in Smalltalk

• VM needs to run this Code
• Many designs possible:

– Interpreter (simple)
– Threaded code
– Simple translation to machine code
– Dynamic optimization (“HotSpot”)
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Garbage Collection

• Provides a high level model for memory
• No need to explicitly free memory
• Different implementations:

– Reference counting
– Mark and sweep
– Generational GC

• A modern GC is *very* efficient
• It’s hard to do better
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Other Hardware Abstraction

• We need a way to access Operating System APIs
– Graphics 
– Networking (TCP/IP)
– Disc / Keyboard....

• Simple solution: 
– Define an API for this Hardware
– Implement this as part of the VM (“Primitives”)
– Call OS library functions directly



Virtual Machine: Lessons learned

• VM: Simulated Machine
• Consists of

– Virtual ISA
– Memory Management
– API for Hardware/OS

• Next: Bytecode
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Bytecode

• Byte-encoded instruction set
• This means: 256 main instructions
• Stack based

• Positive:
– Very compact
– Easy to interpret

• Important: The ISA of a VM does not need to be 
Bytecode. 
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Compiling to Bytecode

1 + 2

76 77 B0 7C

Program Text

Compiler

Bytecode
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Example: Number>>asInteger

• Smalltalk code:

• Symbolic Bytecode

	

 ^1 + 2 

<76> pushConstant: 1
<77> pushConstant: 2
<B0> send: +
<7C> returnTop
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Example: Java Bytecode

• From class Rectangle
public int perimeter()

0: iconst_2
1: aload_0        “push this”
2: getfield#2     “value of sides”
5: iconst_0
6: iaload
7: aload_0                       2*(sides[0]+sides[1])
8: getfield#2
11: iconst_1
12: iaload
13: iadd
14: imul
15: ireturn
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Difference Java and Squeak

• Instruction for arithmetic 
– Just method calls in Smalltalk

• Typed: special bytecode for int, long, float
• Bytecode for array access

• Not shown: 
– Jumps for loops and control structures
– Exceptions (java)
– ....
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Systems Using Bytecode

• USCD Pascal (first, ~1970)
• Smalltalk
• Java
• PHP
• Python

• No bytecode:
– Ruby: Interprets the AST



Bytecode: Lessons Learned

• Instruction set of a VM
• Stack based
• Fairly simple

• Next: Bytecode Execution
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Running Bytecode

• Invented for Interpretation
• But there are faster ways to do it

• We will see
– Interpreter
– Threaded code
– Translation to machine code (JIT, Hotspot)
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Interpreter

• Just a big loop with a case statement

• Positive:
– Memory efficient 
– Very simple
– Easy to port to new machines

• Negative:
– Slooooooow...

while (1) {
	

 bc = *ip++; 
	

 switch (bc) {
	

 	

 ...
	

 	

 case 0x76:
	

 	

 	

 *++sp = ConstOne;
	

 	

 	

 break;
	

 	

 ...
	

 }
}
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Faster: Threaded Code

• Idea: Bytecode implementation in memory has 
Address

• Pro:
– Faster
– Still fairly simple
– Still portable
– Used (and pioneered) in Forth. 
– Threaded code can be the ISA of the VM

	


push1: 
	

 *++sp = ConstOne
	

 goto *ip++;
push2:
	

 *++sp = ConstTwo
	

 goto *ip++;

Bytecode Addresses

translate
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Next Step: Translation

• Idea: Translate bytecode to machine code

• Pro: 
– Faster execution
– Possible to do optimizations
– Interesting tricks possible: Inline Caching (later)

• Negative
– Complex
– Not portable across processors
– Memory

Bytecode Binary Code

translate
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Simple JIT Compiler

• JIT = “Just in Time”
• On first execution: Generate Code
• Need to be very fast

– No time for many code optimizations
• Code is cached (LRU)

• Memory:
– Cache + implementation JIT in RAM.
– We trade memory for performance.



Bytecode Execution: Lessons Learned

• We have seen
– Interpreter
– Threaded Code
– Simple JIT

• Next: Optimizations
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Optimizing Method Lookup

• What is slow in OO virtual machines?

• Overhead of Bytecode Interpretation
– Solved with JIT

• Method Lookup
– Java: Polymorph
– Smalltalk: Polymorph and dynamically typed 
– Method to call can only be looked up at runtime
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Example Method Lookup

• A simple example:

• The method “+” executed depends on the receiving 
object

array := #(0 1 2 2.5).

array collect: [:each | each + 1]
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Method Lookup

• Need to look this up at runtime:
– Get class of the receiver
– if method not found, look in superclass

Code for lookup 
(in the VM)....

lookup(obj, sel)
....

Binary Code 
(generated by JIT)

Code of Method
Found
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Observation: Yesterday’s Weather

• Predict the weather of tomorrow: Same as today
• Is right in over 80%

• Similar for method lookup:
– Look up method on first execution of a send
– The next lookup would likely get the same method

• True polymorphic sends are seldom
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Inline Cache

• Goal: Make sends faster in many cases
• Solution: remember the last lookup

• Trick: 
– Inline cache (IC) 
– In the binary code of the sender
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Inline Cache: First Execution

....
lookup(obj, sel)
....

Binary Code 
(generated by JIT)

First Call:

1) lookup the method
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Inline Cache: First Execution

....
lookup(obj, sel)
....

Binary Code 
(generated by JIT)

First Call:

1) lookup the method

Code of Method
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Inline Cache: First Execution

....
lookup(obj, sel)
....

Binary Code 
(generated by JIT)

First Call:

1) lookup the method
2) generate test preamble

Code of Method

check receiver  
type
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Inline Cache: First Execution

....
call preamble
....

Binary Code 
(generated by JIT)

First Call:

1) lookup the method
2) generate test preamble
3) patch calling method

Code of Method

check receiver  
type
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Inline Cache: First Execution

....
call preamble
....

Binary Code 
(generated by JIT)

First Call:

1) lookup the method
2) generate test preamble
3) patch calling method
4) execute method and return

Code of Method

check receiver  
type
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Inline Cache: Second Execution

....
call preamble
....

Binary Code 
(generated by JIT)

Second Call:

Code of Method

check receiver  
type

normal
lookup

wrong

- we jump directly to the test
- If test is ok, execute the method
- If not, do normal lookup
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Limitation of Simple Inline Caches

•  Works nicely at places were only one method is 
called. “Monomorphic sends”. >80%

• How to solve it for the rest?

• Polymorphic sends (<15%) 
– <10 different classes

• Megamophic sends (<5%)
– >10 different classes
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Example Polymorphic Send

• This example is Polymorphic.

• Two classes: Integer and Float

• Inline cache will fail at every send
• It will be slower than doing just a lookup!

array := #(1 1.5 2 2.5 3 3.5).

array collect: [:each | each + 1]
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Polymorphic Inline Caches

• Solution: When inline cache fails, build up a PIC

• Basic idea: 
– For each receiver, remember the method found
– Generate stub to call the correct method
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PIC

....
call pic
....

Binary Code 
(generated by JIT)

Code of Method
(Float)

check receiver  
type

Code of Method 
(Integer)

check receiver  
type

If type = Integer

 jump
If type = Float

 jump
else

 call lookup
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PIC

• PICs solve the problem of Polymorphic sends
• Three steps:

– Normal Lookup / generate IC
– IC lookup, if fail: build PIC
– PIC lookup

• PICs grow to a fixed size (~10)
• After that: replace entries

• Megamorphic sends:
– Will be slow
– Some systems detect them and disable caching



Optimizations: Lessons Learned

• We have seen
– Inline Caches
– Polymorphic Inline Caches

• Next: Beyond Just-In-Time
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Beyond JIT: Dynamic Optimization

• Just-In-Time == Not-Enough-Time
– No complex optimization possible
– No whole-program-optimization

• We want to do real optimizations!
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Excursion: Optimizations

• Or: Why is a modern compiler so slow?

• There is a lot to do to generate good code!
– Transformation in a good intermediate form (SSA)
– Many different optimization passes

• Constant subexpression elimination (CSE)
• Dead code elimination
• Inlining

– Register allocation
– Instruction selection
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State of the Art: HotSpot et. al.

• Pioneered in Self
• Use multiple compilers

– Fast but bad code
– Slow but good code

• Only invest time were it really pays off
• Here we can invest some more

• Problem: Very complicated, huge warmup, lots of 
Memory

• Examples: Self, Java Hotspot, Jikes
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PIC Data for Inlining

• Use type information from PIC for specialisation
• Example: Class Point

...
lookup(rec, sel)
....

Binary Code 
(generated by JIT)

CarthesianPoint>>x
	

 ^x

PolarPoint>>x
	

 “compute x from rho and theta”
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Example Inlining

• The PIC will be build

...
call pic
....

Binary Code 
(generated by JIT)

If type = CarthesianPoint

 jump
If type = PolarPoint

 jump
else

 call lookup

 

The PIC contains 
type Information!
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Example Inlining

...
if type = cartesian point 

 result ← receiver.x 
else if type = polar point 

 result ← receiver.rho * cos(receiver.theta) 
else call lookup 
...

• We can inline code for all known cases

Binary Code 
(generated by JIT)



End

• What is a VM
• Overview about bytecode interpreter / compiler
• Inline Caching / PICs
• Dynamic Optimization

• Questions?
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• Smith/Nair: Virtual Machines (Morgan Kaufman 
August 2005). Looks quite good!

• For PICs:
– Urs Hölzle, Craig Chambers, David Ungar: Optimizing 

Dynamically-Typed Object-Oriented Languages With 
Polymorphic Inline Caches

– Urs Hoelzle. "Adaptive Optimization for Self: Reconciling 
High Performance with Exploratory Programming." Ph.D. 
thesis, Computer Science Department, Stanford 
University, August 1994.


