
© Marcus Denker

Software Evolution from the Field:
An Experience Report
from the Squeak Maintainers

Marcus Denker
SCG University of Berne
Switzerland

Stéphane Ducasse
LISTIC
Université de Savoie
France

© Marcus Denker

Roadmap

> A little bit about Squeak
> Evolution problems
> Towards a solution

— Software Engineering
— Process
— Programming Language

© Marcus Denker

Squeak: Open Source Smalltalk

> Based on original Smalltalk
— parts of the codebase are 30 years old

> Squeak is no toy! (even if it looks like one...)
— 1600 Classes, 32.000 Methods

> We have been responsible for 3.7 and 3.9

© Marcus Denker

Squeak: Features

> Two graphical user interface frameworks
— MVC, Morphic

> Complete IDE with all tools
— Incremental compiler, debugger, code browser...

> Language core and libraries
> eToy: programming for kids
> Multimedia support: pictures / movies / sound
> Various libraries: compression, encryption, networking

© Marcus Denker

Communities and Projects

> Seaside: web framework
> Croquet: multiuser 3D
> Tweak / Sophie: media authoring
> SmallLand: Squeak for Kids
> SqueakLand: spanish schools (>40.000 PCs)
> Research (e.g. SCG Bern)

© Marcus Denker

Squeak Development Process

> Up to 3.4: Alan Kay’s group
> Since 2001: real open source project

— Squeak Foundation Board: Elected 2006
> For each release: maintainers

— 3.9: Stephane Ducasse, Marcus Denker
> Release team (maintainers):

— Integration (core)
— Coordination (packages)

© Marcus Denker

Measurable facts

year #classes #method LOC #changes
3.5 2003 1811 41408 322k 10
3.6 2003 1338 33277 246k 240

3.7 2004 1544 35526 261k 560

3.8 2005 1659 37953 281k 600

3.9a 2006 >2000 >44000 >300k n/a

© Marcus Denker

Common Problems

> Tangled code

> Dead code (ca. 30 years old!)

> Prototype code / old experiments

> Evolution dilemma:
— How to provide a stable base and move forward?

© Marcus Denker

Egocentric Syndrome

> Change means:
— some bugs are fixed, new bugs are introduced
— client code may need to be adapted

> Programmer solution: be egoistic

> “Get my bugfix in NOW, but change nothing else!”

© Marcus Denker

Towards a Solution

> Software Engineering

> Process

> Language Design

© Marcus Denker

Software Engineering

> Deprecation
> Modularizing
> Registration Mechanisms / Abstractions
> Refactoring
> Tests

© Marcus Denker

Deprecation mechanism

> Retain old methods for compatibility
> But flag them as deprecated

— Raise warning at runtime

> retained for one release
> Problems:

— for methods only, change happens too often

Month>>eachWeekDo: aBlock
self deprecated: ’Use #weeksDo:’.
self weeksDo: aBlock

© Marcus Denker

Modularization

> 3.9: composed of 49 packages
— average of 40 classes per package

> Has been done ad-hoc: need to be analysed!

> positive effects:
— Packages maintained by third parties
— Lots of hints where to clean up

© Marcus Denker

New Abstractions

> Registration vs. editing code
— Tools (e.g., refactoring) , menus

> ToolBuilder: abstract the UI Framework

> System change notification

© Marcus Denker

Refactoring and Tests

> refactoring
— Remove prototype code
— started to untangle packages

> tests
— Programmer tests enable change
— started to collect tests in 3.7
— ~2000 in 3.9a

© Marcus Denker

Process

> Better versioning tools

> Bug tracking

> Future: automatic build tools

© Marcus Denker

Versioning Tools

> Old Smalltalk model: send patch files around
— This does not scale!

> Monticello: versioning system for Squeak
— contributed by the commercial sub-community
— introduces simple package mechanism
— very powerful merge tool
— improves workflow

© Marcus Denker

Bug Tracking

> No real bug tracking for a long time
— Amazing! (but true for many projects)

> Introduced slowly around 3.7

> real tool based bug tracking since 3.8

© Marcus Denker

Automated Building and Testing

> Tests need to be executed to be useful
— Squeak ships with many broken tests!

> Solution: automatic test server
— We are working on that now

> Second step: automated build server
— Build external packages
— Run tests

© Marcus Denker

Language Design

> Better support for Modularity

> History as a First Class Entity

> Beyond Deprecation

© Marcus Denker

First class History

> Squeak is reflective: has a first class model of its own
static structure (classes, methods)

> Extend the meta model to include data important for
evolution

> History as a first class entity
— Why did this change?
— What else was change when this method changed?
— When did this test break for the first time?
— Which change affected the performance of the system?

© Marcus Denker

Beyond Deprecation

> Deprecation: allow clients to migrate incrementally

> Can we do better?

> Complete history available
— We can run different version per client
— Slowly propagate changes through the system

© Marcus Denker

Conclusion

> Evolution is a real problem for Squeak

> We need to improve on all levels
— Better code base
— Better tools + processes

> How can the language support evolution?

© Marcus Denker

Questions?

> Evolution is a real problem for Squeak

> We need to improve on all levels
— Better code base
— Better tools + processes

> How can the language support evolution?

