
© Marcus Denker

Beyond Text - Methods As Objects

Marcus Denker
Software Composition Group
University of Berne - Switzerland

© Marcus Denker

Software Composition Group
University of Berne

> Lead by Oscar Nierstrasz and Stephane Ducasse
> Overall Focus: Software Evolution
> Two parts:

— Evolution of Existing Systems (Reengineering)
– Moose, CodeCrawler

— Language Design for enabling Evolution
– Traits
– ClassBoxes

> Forward and Reverse engineering viewpoints
— We start to see many parallels / cross fertilization

© Marcus Denker

Roadmap

> Reflective Systems
— Behavioral Reflection
— Squeak’s Reflective capabilties

> Methods in Squeak
— Methods as Objects
— Objects as Methods

> ByteSurgeon and Geppetto
— Usage
— Problems

> Beyond text

© Marcus Denker

Reflection

> Object oriented model of the system available inside the
system
— called “Introspection”
— Java

> Model is causally connected
— Changing this model changes the system
— called “Intercession”

> Reflection = Introspection + Intercession

© Marcus Denker

Behavioral and Structural

> Structural reflection: changing structure
— Add / remove classes and methods
— Add / remove instance variables
— Change inheritance relationship

> Behavioral reflection: changing behavior
— What is inheritance?
— Hook into instance variable stores (e.g. persistence)

> Both are related
— change of structure changes behavior

© Marcus Denker

Usage: Why Reflection

> Structural reflection
— Changing systems at runtime
— Powerful development environments (no edit-compile-run)
— Analysis (through introspection)

> Behavioral reflection
— Language experiments
— Debugging
— Dynamic analysis (tracing, visualization)
— New language features (e.g. persistence)

© Marcus Denker

Squeak: A Reflective System

> Squeak: open source Smalltalk
— Classes and methods are objects
— Changing these objects changes the system (at runtime)

> API for
— adding / removing classes + methods
— adding / removing instance variables
— changing inheritance relationship

© Marcus Denker

Squeak: Behavioral Reflection

> Behavioral Reflection: only by changing methods

> There is no API for introspection/intercession of
— Instance variable access
— Temp variable access
— Message sending
— Message lookup
— Method execution

© Marcus Denker

Structural Reflection enables
Behavioral Reflection

> General: Change of structure changes behavior
> We can use the structural reflection API to provide

behavioral reflection
— Methods are objects
— We can just replace them with our version that does what we

want

© Marcus Denker

Behavioral Reflection: Howto?

> Method Wrappers (e.g. used by AspectS)
— Gives access to before / after of method execution

> Squeak’s Objects-As-Methods
— we can install any object as a method that implements a simple

protocol (#run:with:in)
— used by ClassBoxes, FacetS
— reifies method execution

> Transformation of text / AST / Bytecode

© Marcus Denker

ByteSurgeon

> Framework for editing bytecode for Squeak
— Like Javasist in Java, but:

> Uses structural reflection to transform at runtime
— Simple model: Inline code before / after a bytecode
— Inlined code is normal smalltalk code
— Not much knowledge about bytecode needed

© Marcus Denker

Example for Bytesurgeon I

> Goal: Logging Message send

example
self test.

example
 Transcript show: ‘sending #test’.
 self test.

© Marcus Denker

Example for Bytesurgeon II

> Goal: Log message send
> with ByteSurgeon:

(Example>>#example) instrumentSend: [:send |
send insertBefore:

‘Transcript show: ‘’sending #test’’ ‘.
]	

© Marcus Denker

Uses of ByteSurgeon at SCG

> Implementation of fast MethodWrapper
— 35 lines of code

> Trace library for runtime tracing

> Back-In-Time Debugger

> Runtime analysis: test coverage

© Marcus Denker

Problems of ByteSurgeon

> Performance
— Faster then code / AST
— But installation takes some time

> Abstractions too low level
— Bytecode
— We want to abstract away from bytecode and talk about

instance variable access, message sending...
— Not a good meta model

© Marcus Denker

Geppetto

> Framework for behavioral reflection
> Build on top of ByteSurgeon

— but abstracts from bytecode

> Fine grained scoping of reflection
— spatial (where? and what?)
— temporal (when?)

> Based on the Reflex Model (Eric Tanter)

© Marcus Denker

Geppetto: Big Picture

Squeak

ByteSurgeon

Geppetto

AOP Tracer

© Marcus Denker

Geppetto: Modell

Reflex
(Tanter OOPSLA 03)

© Marcus Denker

Problem with Bytecode in Geppetto

> Bytecode is not a good meta model
> Lots of management infrastructure is needed

— Hook composition
— Synthesised elements (hooks) vs. original code
— Mapping to source elements

> Bytecode is optimized
— e.g. no ifTrue:

© Marcus Denker

Beyond Text: A Meta Model for
Methods

> We need a high-level meta model for methods
> This model needs to be causally connected

— edit the model --> edit the system

> Text and Byte- (Binary-) code generated on demand

© Marcus Denker

Beyond Text: A Meta Model for
Methods

> Structure of method is implicit
— Compile text (to AST)
— Decompile bytecode (to IR or AST)

> Both text and bytecode are pretty low level
> Not suited for being the main representation

— How to annotate text?
— How to tag synthesised bytecode?

> Possible Model: AST

© Marcus Denker

Many users

Refactoring

 Method
Meta Model

JIT

Pluggable
Typesystem

Editor
(pretty printer)

Reflection

Aspects

Annotations

© Marcus Denker

Explorations...

> Annotation framework
— Nodes can be annotated
— We can have any object as a (non-textual) annotation

> replace ByteSurgeon by AST based transformer
> Idea: Behavioral Reflection with Annotations
> Combine with AspectS for dynamic Aspects

© Marcus Denker

Conclusion

> We have had a quick intro in Reflection
— Squeak and how it enables reflection

> How to realize behavioral reflection
— Bytesurgeon and Geppetto
— Problems

> We need a Meta Model for Methods

© Marcus Denker

License

> http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

