
Metaprogramming and Reflection
Refactoring

Universität Bern
Marcus Denker

Hasso-Plattner-Institut Potsdam
Software Architecture Group
Prof. Dr. Robert Hirschfeld

http://www.swa.hpi.uni-potsdam.de
WS 2006/2007

2Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Topics Covered

• Overview
• Introduction
• Open implementations
• OMG meta object facility
• CLOS metaobject protocol
• Smalltalk/Squeak
• Behavioral reflection
• Refactoring browser
• AspectS and ContextS
• Traits and mirrors
• Metacircular interpreters

Objects

3Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Outline

• Refactoring: Basics
• Refactoring in Squeak: Browser + Tools
• Refactoring Engine: Implementation
• Discussion: Reflection?

4Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

What is Refactoring?

• The process of changing a software system in such
a way that it does not alter the external behaviour of
the code, yet improves its internal structure.

– Fowler, et al., Refactoring, 1999.

5Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Typical Refactorings

extract code in new
method

abstract variablemove method to
component

create accessorsadd parameter to method

pull variable uppush method up

push variable downpush method down

remove variableremove methodremove class

rename variablerename methodrename class

add variable to classadd method to classadd (sub)class to
hierarchy

AttributeMethodClass

6Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Why Refactor?
“Grow, don’t build software”

– Fred Brooks
• The reality:

– Extremely difficult to get the design “right” the first time
– Hard to fully understand the problem domain
– Hard to understand user requirements, even if the user does!
– Hard to know how the system will evolve in five years
– Original design is often inadequate
– System becomes brittle over time, and more difficult to change

• Refactoring helps you to
– Manipulate code in a safe environment (behavior preserving)
– Recreate a situation where evolution is possible
– Understand existing code

7Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Rename Method — manual steps

• Do it yourself approach:
– Check that no method with the new name already exists in

any subclass or superclass.
– Browse all the implementers (method definitions)
– Browse all the senders (method invocations)
– Edit and rename all implementers
– Edit and rename all senders
– Remove all implementers
– Test

• Automated refactoring is better !

8Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Rename Method
• Rename Method (method, new name)
• Preconditions

– No method with the new name already exists in any
subclass or superclass.

– No methods with same signature as method outside the
inheritance hierarchy of method

• PostConditions
– method has new name
– relevant methods in the inheritance hierarchy have new

name
– invocations of changed method are updated to new name

• Other Considerations
– Typed/Dynamically Typed Languages => Scope of the

renaming

9Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Refactoring and Metaprograming
• Automated Refactoring is metaprograming

– We use a program to edit programs

• Does not need to use Reflection
– Pure source-to-source transformation (e.g. Java)

• Uses reflective facilities in Smalltalk
– But… let’s discuss that at the end

10Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Outline

• Refactoring: Basics
• Refactoring in Squeak: Browser + Tools
• Refactoring Engine: Implementation
• Discussion: Reflection?

11Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Refactoring in Squeak

• No support in standard IDE
– Example: Try to rename a method

• Refactoring Browser
– First Refactoring Browser (for any language)
– Now over 10 years old

• Installation
– Get Squeak 3.9 (older version for 3.8, too)
– Install Package AST
– Install Package Refactoring Engine

12Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Refactoring Browser

• Browser with menus for e.g
– rename
– Push up/down
– Inlining
– Add parameter
– Extraction

13Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

SmallLint

• Checks for common mistakes

14Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

SmallLint Checks

• Possible Bugs
– Variable read before written
– Defines #= but not #hash
– Modifies Collection while iterating over it

• Bugs
– Uses True/False instead of true/false
– Variable used but not defined

• Squeak Bugs
• Unnecessary Code
• Intention Revealing

15Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

SmallLint

• Very useful!
• Especially valuable for beginners

• Has been integrated with SUnit
– Call SmallLint automatically as a test

• Tag methods where SmallLint is wrong
– Uses Squeak 3.9 Method Pragmas

16Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

RewriteTool

• Pattern driven automatic editor

17Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

RewriteTool

• Access to full power of Refactoring Engine

• Custom refactorings:
– generic rewrites that the RB does not currently provide
– bulk transformations: your project needs to change a project-

specific pattern to a new form
– changing layers: e.g. build a new DB layer, find and change

17,000 references to old layer
– migrations: e.g. between Smalltalk dialects

• Powerful but not trivial to use
• Examples: Later

18Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Outline

• Refactoring: Basics
• Refactoring in Squeak: Browser + Tools
• Refactoring Engine: Implementation
• Discussion: Reflection?

[Main Source] Don Roberts, John Brant, and Ralph Johnson. A
Refactoring Tool for Smalltalk. Theory and Practice of Object
Systems, vol. 3, issue 4

19Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Implementation Overview
• Goal: Transformation on the Source
• Idea: Transform into a higher level tree

representation

20Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

The RB Abstract Syntax Tree

• AST: Abstract Syntax Tree
– Encodes the Syntax as a Tree
– Features:

• Visitors
• Backward pointers in ParseNodes
• Encodes formatting
• Transformation (replace/add/delete)
• Pattern-directed TreeRewriter
• PrettyPrinter

RBProgramNode
 RBDoItNode
 RBMethodNode
 RBReturnNode
 RBSequenceNode
 RBValueNode

RBArrayNode
RBAssignmentNode
RBBlockNode
RBCascadeNode
RBLiteralNode
RBMessageNode
RBOptimizedNode
RBVariableNode

21Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

A Simple AST

explore itRBParser parseExpression: '3+4'

22Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

A Simple Visitor

RBProgramNodeVisitor new visitNode: tree

Does nothing except
walk through the tree

23Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

More Complete Visitor
RBProgramNodeVisitor subclass: #TestVisitor

instanceVariableNames: 'literals'
classVariableNames: ''
poolDictionaries: ''
category: 'Compiler-AST-Visitors'

TestVisitor>>acceptLiteralNode: aLiteralNode
literals add: aLiteralNode value.

TestVisitor>>initialize
literals := Set new.

TestVisitor>>literals
^literals

tree := RBParser parseExpression: '3 + 4'.
(TestVisitor new visitNode: tree) literals

 a Set(3 4)

24Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Tree Matcher

• Implementing all Refactorings with visitors
– Too much work
– Too low level

• Needed: High level specification of transformations

• Rewrite Engine: Core of Refactoring Engine

• No only useful for Refactoring!

25Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Tree Matcher

• Describe transformation by using patterns

• Syntax: Smalltalk + Meta Variables

• Example:

| `@Temps |
``@.Statements.
``@Boolean ifTrue: [^false].
^true

26Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Meta Variables

`#literalliteral#

`.Statementstatement.

| `@Temps |
`@.statements

list@

``@object foorecurse into`

ExampleTypeCharacter

All Meta Variables begin with `

27Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Example 1

• Search for:
``@object not ifTrue: ``@block

• Replace with: ``@object ifFalse: ``@block

• Explanation:
– Eliminate an unnecesary not message

28Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Example 2

• Search for: | `@Temps |
``@.Statements.
``@Boolean ifTrue: [^false].
^true

• Replace with: | `@Temps |

``@.Statements.

^``@Boolean not

• Explanation:
– Return the value of the boolean negated instead of using a

conditional

29Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Implementation: Model and Environment

• Model Code transformed but not installed
– We need to be able to see refactored code without

changing the system.
– RBNameSpace

• Model Classes + Methods
– Framework duplicates Smalltalk‘s structural Reflection
– RBClass, RBMethod

• Model Scope to which Refactorings apply
– RBEnvironment

30Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Back to Code: Pretty Printer

• Visitor: Walks the AST
• Prints out text for each node

• Problem: How to preserve formatting?
– AST saves formatting (whitespace, parenthesis)
– Pretty Printer can use saved formatting information

31Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Contributions needed
• Improved UI

• Integrated Parser with Squeak NewCompiler
– Scanner/Parser done with tool (SmaCC)
– Easier to change / experiment

• Integrated RoelTyper
– Heuristical type inference

• Better PrettyPrinter
– Configurability
– Better Layout

32Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Outline

• Refactoring: Basics
• Refatoring in Squeak: Browser + Tools
• Refactoring Engine: Implementation
• Discussion: Reflection?

33Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Reflection?

• We change the system using itself
– So it‘s Reflection, on some level

• But: Let‘s look again at the definition
– Model of itself
– Causally connected

• We Build our own abstraction layer
– AST + Environment

• This Model is not causally connected!

34Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

State Today

35Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Why not this?

36Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Towards Better Reflection

• High-level sub-method structural reflection

• First prototype: Persephone
– „AST only“ Smalltalk:

• causally connected AST
• Uses RB AST

– Annotation Framework
– Provides ByteSurgeon functionality on AST

– Lots of interesting projects:
• Presentation framework for annotated code
• …..

37Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Outline

• Refactoring: Basics
• Refatoring in Squeak: Browser + Tools
• Refactoring Engine: Implementation
• Discussion: Reflection?

38Software Architecture Group (www.swa.hpi.uni-potsdam.de) 2006

Metaprogramming and Metamodelling – Refactoring

Outline

• Refactoring: Basics
• Refatoring in Squeak: Browser + Tools
• Refactoring Engine: Implementation
• Discussion: Reflection?

Questions?

