
© Marcus Denker

Design and Implementation
of a Backward-In-Time
Debugger

Christoph Hofer
Marcus Denker
Stephane Ducasse

© Marcus Denker

Roadmap

> Problem
> Unstuck: A new Debugger for Squeak
> Implementation
> Lessons Learned
> Future work

© Marcus Denker

Problem

> Debugger: Snapshot of state at time of error

> Cause for errors is in the past
— Who assigned *that* value?

> very incomplete history available
— guess were to set breakpoint, rerun

© Marcus Denker

Example

Foo>>initialize
 var1 := 0.
 var2 := ''.

Foo>>start
 self beforeBar.
 self bar.
 self moreBar.

Foo>>beforeBar
 var1 = 0 ifTrue: [

var2 := nil.]

Foo>>bar

Foo>>moreBar
 var2 size > 0 ifTrue:[

^var2 at: 1].
 ^''

© Marcus Denker

Stack Trace

> Squeak Debugger
> Shows stack trace

— methods not
returned

— old state lost

© Marcus Denker

Stack Trace

> Squeak Debugger
> Shows stack trace

— methods not
returned

— old state lost

© Marcus Denker

Solution

> We want:
— Record the history of the program
— View the state at any point in the past

> Unstuck
— A new Debugger for Squeak
— Provides full trace information

© Marcus Denker

Unstuck UI

1. Trace
2. Object
3. Code
4. History
5. Query

© Marcus Denker

Searching

Variable Search Domain

event All events

send all message sends

return all method returns

varAccess all variable accesses

instVarAccess instance variable access

tempVarAccess temporary variables

© Marcus Denker

Searching: Example

Query Result
send selector = #foo All the executed methods

named ”foo”

return returnValue > 4 All returns with a return
value greater than 4

events isSend &
(even arguments size = 1)

Message sends with exactly
one argument

© Marcus Denker

Coloring

> We can assign a color to any
object

> Easy tracking of objects

> Color is shown in all views of
the UI

© Marcus Denker

Implementation

Debugger

Trace Library

ByteSurgeon

uses

uses

© Marcus Denker

ByteSurgeon

> Framework for editing bytecode for Squeak
— Like Javasist in Java, but:

> Uses structural reflection to transform at runtime
— Simple model: Inline code before / after a bytecode
— Inlined code is normal smalltalk code
— Not much knowledge about bytecode needed

© Marcus Denker

Trace Library

> Called from annotated code
> Builds up the trace

> Provides
— Trace model
— Event pre-processing (ordering)
— State reconstruction

© Marcus Denker

State reconstruction

> State not recorded for completely annotated classes
— past state can be reconstructed from trace

> System never completely annotated
— Tracer saves state of non-annotated objects

© Marcus Denker

Debugging system classes

> Annotate classes used by Bytesurgeon or Tracer
— System classes (e.g. Collection or String)
— Compiler (e.g. AST)

> Problems:
— Classes used for annotation --> crash
— Tracer records events generated by the tracer

© Marcus Denker

Solution

> Retain both methods (original + annotated)
> Generate preamble

— test for global
— call original methods when inactive

> Common problem when using reflection!
— General solution?
— Future work!

© Marcus Denker

Benchmarks

Events Slowdown Memory
(Kb)

Example 74 6 16

AST Bug 2725 3.8 800

Pier Trace 389689 248 88800

© Marcus Denker

Future Work

> further analyze + improve
— Memory Consumption (GC effects)
— Performance

> Use behavioral reflection
— fine grained selection
— Scoping
— Annotation of system classes

© Marcus Denker

Conclusion

> Problem of current debugging tools

> Overview of Unstuck
— UI
— Implementation

> Having the history available helps
— Possible for small programs
— Work needed for bigger systems + continuous use

© Marcus Denker

Conclusion

> Problem of current debugging tools

> Overview of Unstuck
— UI
— Implementation

> Having the history available helps
— Possible for small programs
— Work needed for bigger systems + continuous use

Questions?

