
© Marcus Denker

TypePlug -- Practical, Pluggable Types

Nik Haldiman

Marcus Denker

Oscar Nierstrasz

University of Bern

Types?

© Marcus Denker

Static typing is Good!

> Programs with failures are rejected

— Reduces errors detected at runtime

> Documentation

> Minor inconvenience, major payoff

http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1
http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1

© Marcus Denker

Static typing is Evil!

> Exactly all cool programs are rejected

— Reflection?!

> Inconvenience is not at all “minor”
— Typed programs hard to change + evolve

> Only the most trivial errors are detected

— False sense of security

http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1
http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1
http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1
http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1

© Marcus Denker

Pluggable Types

> Optional: does not change the semantics

> Pluggable: many different ones
— Especially exotic type-systems

> “Type-Systems as Tools”

Gilad Bracha, OOPSLA 04:

Pluggable Type-Systems

© Marcus Denker

The Problem

> Large, untyped code-base

> Overhead for using pluggable types is high

— Existing code needs to be annotated with type information

© Marcus Denker

TypePlug

> Pluggable types for Squeak

> Based on sub-method reflection framework
(Demo on Wednesday!)

> Case-Studies:
— Non-Nil Types

— Class Based Types

— Confined Types

© Marcus Denker

Non-Nil Type-System

> Declare variables to never be nil

Object subclass: #Line

 typedInstanceVariables: ’startPoint endPoint <:nonNil:>’

 typedClassVariables: ’’

 poolDictionaries: ''

 category: 'Demo'

DEMO

© Marcus Denker

Non-Nil Type-System

moveHorizontally: anInteger

startPoint := self movePoint: startPoint

 horizontally: anInteger.

endPoint:=self movePoint: endPoint

 horizontally: anInteger

© Marcus Denker

Non-Nil Type-System

moveHorizontally: anInteger

startPoint := self movePoint: startPoint

 horizontally: anInteger.

endPoint:=self movePoint: endPoint

 horizontally: anInteger <- type ’TopType’ of

expression is not compatible with type ’nonNil’ of variable

’endPoint’.

! !

© Marcus Denker

Non-Nil Type-System

movePoint: aPoint horizontally: anInteger

! ! ! (aPoint addX: anInteger y: 0) <:nonNil :>

© Marcus Denker

The Problem (again)

> Large, untyped code-base

> Overhead for using pluggable types is high

— Existing code needs to be annotated with type information

© Marcus Denker

Solution

> Only type-check annotated code

> Use type-inference to infer types of non-annotated code

> Explicit type-casts

> Allow external annotations for foreign code

© Marcus Denker

External Type Annotations

> We need to annotate existing code

— Especially libraries and frameworks

— Example: Object>>#hash is <: nonNil :>

> We do not want to change the program code!

> Solution: External Type Annotations

— Added and modified in the TypesBrowser

— Do not change the source

— External representation: Type Packages

© Marcus Denker

Browser

© Marcus Denker

Future Work

> Improve Type-Inference

— Better algorithms

— Explore heuristical type inference (Roeltyper)

> Type Checking and Reflection

— Use pluggable types to check reflective change

© Marcus Denker

Conclusion

> TypePlug: Pragmatic framework for Pluggable Types

— Only type-check annotated code

— Use type-inference

— Explicit type-casts

— External annotations for foreign code

© Marcus Denker

Conclusion

> TypePlug: Pragmatic framework for Pluggable Types

— Only type-check annotated code

— Use type-inference

— Explicit type-casts

— External annotations for foreign code

Questions?

