
© Marcus Denker

Refactoring and Reflection

Marcus Denker
denker@iam.unibe.ch

Universität Bern

mailto:denker@iam.unibe.ch
mailto:denker@iam.unibe.ch

© Marcus Denker

Roadmap

> First lecture: Refactoring
— Squeak as an example

> Second Lecture: Reflection
— About current research

© Marcus Denker

Part I: Refactoring

Marcus Denker
denker@iam.unibe.ch

Universität Bern

mailto:denker@iam.unibe.ch
mailto:denker@iam.unibe.ch

© Marcus Denker

Overview

> Refactoring: Basics
> Refactoring in Squeak: Browser + Tools
> Refactoring Engine: Implementation
> Discussion: Reflection?

© Marcus Denker

Roadmap

> Refactoring: Basics
> Refactoring in Squeak: Browser + Tools
> Refactoring Engine: Implementation
> Discussion: Reflection?

© Marcus Denker

What is Refactoring?

> The process of changing a software system in such a
way that it does not alter the external behaviour of the
code, yet improves its internal structure.

— Fowler, et al., Refactoring, 1999.

© Marcus Denker

Typical Refactorings

Class Method Attribute
add (sub)class to
hierarchy

add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

push method down push variable down

push method up pull variable up

add parameter to method create accessors

move method to
component

abstract variable

extract code in new
method

© Marcus Denker

Why Refactor?

“Grow, don’t build software”
— Fred Brooks

> The reality:
— Extremely difficult to get the design “right” the first time
— Hard to fully understand the problem domain
— Hard to understand user requirements, even if the user does!
— Hard to know how the system will evolve in five years
— Original design is often inadequate
— System becomes brittle over time, and more difficult to change

> Refactoring helps you to
— Manipulate code in a safe environment (behavior preserving)
— Recreate a situation where evolution is possible
— Understand existing code

© Marcus Denker

Rename Method — manual steps

> Do it yourself approach:
— Check that no method with the new name already exists in any

subclass or superclass.
— Browse all the implementers (method definitions)
— Browse all the senders (method invocations)
— Edit and rename all implementers
— Edit and rename all senders
— Remove all implementers
— Test

> Automated refactoring is better !

© Marcus Denker

Rename Method

> Rename Method (method, new name)
> Preconditions

— No method with the new name already exists in any subclass or
superclass.

— No methods with same signature as method outside the
inheritance hierarchy of method

> PostConditions
— method has new name
— relevant methods in the inheritance hierarchy have new name
— invocations of changed method are updated to new name

> Other Considerations
— Typed/Dynamically Typed Languages => Scope of the renaming

© Marcus Denker

Refactoring and Metaprograming

> Automated Refactoring is metaprograming
— We use a program to edit programs

> Does not need to use Reflection
— Pure source-to-source transformation (e.g. Java)

> Uses reflective facilities in Smalltalk
— But… letʼs discuss that at the end

© Marcus Denker

Roadmap

> Refactoring: Basics
> Refactoring in Squeak: Browser + Tools
> Refactoring Engine: Implementation
> Discussion: Reflection?

© Marcus Denker

Refactoring in Squeak

> No support in standard IDE
— Example: Try to rename a method

> Refactoring Browser
— First Refactoring Browser (for any language)
— Now over 10 years old

> Installation
— Get Squeak 3.9 (older version for 3.8, too)
— Install Package AST
— Install Package Refactoring Engine

© Marcus Denker

Refactoring Browser

> Browser with menus for e.g
— rename
— Push up/down
— Inlining
— Add parameter
— Extraction

© Marcus Denker

SmallLint

> Checks for common mistakes

© Marcus Denker

SmallLint Checks

> Possible Bugs
— Variable read before written
— Defines #= but not #hash
— Modifies Collection while iterating over it

> Bugs
— Uses True/False instead of true/false
— Variable used but not defined

> Squeak Bugs
> Unnecessary Code
> Intention Revealing

© Marcus Denker

SmallLint

> Very useful!
> Especially valuable for beginners

> Has been integrated with SUnit
— Call SmallLint automatically as a test

> Tag methods where SmallLint is wrong
— Uses Squeak 3.9 Method Pragmas

© Marcus Denker

RewriteTool

> Pattern driven automatic editor

© Marcus Denker

RewriteTool

> Access to full power of Refactoring Engine

> Custom refactorings:
— generic rewrites that the RB does not currently provide
— bulk transformations: your project needs to change a project-

specific pattern to a new form
— changing layers: e.g. build a new DB layer, find and change

17,000 references to old layer
— migrations: e.g. between Smalltalk dialects

> Powerful but not trivial to use
> Examples: Later

© Marcus Denker

Roadmap

> Refactoring: Basics
> Refactoring in Squeak: Browser + Tools
> Refactoring Engine: Implementation
> Discussion: Reflection?

[Main Source] Don Roberts, John Brant, and Ralph Johnson. A
Refactoring Tool for Smalltalk. Theory and Practice of Object
Systems, vol. 3, issue 4

© Marcus Denker

Implementation Overview

> Goal: Transformation on the Source
> Idea: Transform into a higher level tree

representation

© Marcus Denker

The RB Abstract Syntax Tree

> AST: Abstract Syntax Tree
— Encodes the Syntax as a Tree
— Features:

– Visitors
– Backward pointers in ParseNodes
– Encodes formatting
– Transformation (replace/add/

delete)
– Pattern-directed TreeRewriter
– PrettyPrinter

RBProgramNode
 RBDoItNode
 RBMethodNode
 RBReturnNode
 RBSequenceNode
 RBValueNode

 RBArrayNode

 RBAssignmentNode

 RBBlockNode

 RBCascadeNode

 RBLiteralNode

 RBMessageNode

 RBOptimizedNode

 RBVariableNode

© Marcus Denker

A Simple AST

explore itRBParser parseExpression: '3+4'

© Marcus Denker

A Simple Visitor

RBProgramNodeVisitor new visitNode: tree

Does nothing except
walk through the tree

© Marcus Denker

More Complete Visitor

RBProgramNodeVisitor subclass: #TestVisitor

 instanceVariableNames: 'literals'

 classVariableNames: ''

 poolDictionaries: ''

 category: 'Compiler-AST-Visitors'

TestVisitor>>acceptLiteralNode: aLiteralNode

 literals add: aLiteralNode value.

TestVisitor>>initialize

 literals := Set new.

TestVisitor>>literals

 ^literals

tree := RBParser parseExpression: '3 + 4'.
(TestVisitor new visitNode: tree) literals

 a Set(3 4)

© Marcus Denker

Tree Matcher

> Implementing all Refactorings with visitors
— Too much work
— Too low level

> Needed: High level specification of transformations

> Rewrite Engine: Core of Refactoring Engine

> No only useful for Refactoring!

© Marcus Denker

Tree Matcher

> Describe transformation by using patterns

> Syntax: Smalltalk + Meta Variables

> Example: | `@Temps |
``@.Statements.
``@Boolean ifTrue: [^false].
^true

© Marcus Denker

Meta Variables

Character Type Example

` recurse into ``@object
foo

@ list | `@Temps |
`@.statements

. statement `.Statement

literal `#literal

All Meta Variables begin with `

© Marcus Denker

Example 1

> Search for: ``@object not ifTrue: ``@block

• Replace with: ``@object ifFalse: ``@block

• Explanation:
– Eliminate an unnecesary not message

© Marcus Denker

Example 2

> Search for:
| `@Temps |
``@.Statements.
``@Boolean ifTrue: [^false].
^true

• Replace with:
| `@Temps |

``@.Statements.

^``@Boolean not

• Explanation:
– Return the value of the boolean negated instead of using a

conditional

© Marcus Denker

Implementation: Model and
Environment

> Model Code transformed but not installed
— We need to be able to see refactored code without changing the

system.
— RBNameSpace

> Model Classes + Methods
— Framework duplicates Smalltalkʻs structural Reflection
— RBClass, RBMethod

> Model Scope to which Refactorings apply
— RBEnvironment

© Marcus Denker

Back to Code: Pretty Printer

> Visitor: Walks the AST
> Prints out text for each node

> Problem: How to preserve formatting?
— AST saves formatting (whitespace, parenthesis)
— Pretty Printer can use saved formatting information

© Marcus Denker

Contributions needed

> Improved UI

> Integrated Parser with Squeak NewCompiler
— Scanner/Parser done with tool (SmaCC)
— Easier to change / experiment

> Integrated RoelTyper
— Heuristical type inference

> Better PrettyPrinter
— Configurability
— Better Layout

© Marcus Denker

Roadmap

> Refactoring: Basics
> Refactoring in Squeak: Browser + Tools
> Refactoring Engine: Implementation
> Discussion: Reflection?

© Marcus Denker

Reflection?

> We change the system using itself
— So itʻs Reflection, on some level

> But: Letʻs look again at the definition
— Model of itself
— Causally connected

> We Build our own abstraction layer
— AST + Environment

> This Model is not causally connected!

© Marcus Denker

State Today

© Marcus Denker

Why not this?

© Marcus Denker

We have seen...

> Refactoring: Basics
> Refatoring in Squeak: Browser + Tools
> Refactoring Engine: Implementation
> Discussion: Reflection?

© Marcus Denker

Questions?

> Refactoring: Basics
> Refatoring in Squeak: Browser + Tools
> Refactoring Engine: Implementation
> Discussion: Reflection?

Questions?

© Marcus Denker

License

> http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

