
8. Static Single Assignment Form

Marcus Denker

© Marcus Denker

SSA

Roadmap

>  Static Single Assignment Form (SSA)

>  Converting to SSA Form

>  Examples

>  Transforming out of SSA

2

© Marcus Denker

SSA

Static Single Assignment Form

>  Goal: simplify procedure-global optimizations

>  Definition:

3

Program is in SSA form if every variable

is only assigned once

© Marcus Denker

SSA

Why Static?

>  Why Static?

— We only look at the static program

— One assignment per variable in the program

>  At runtime variables are assigned multiple times!

4

© Marcus Denker

SSA

Example: Sequence

>  Easy to do for sequential programs:

5

a := b + c

b := c + 1

d := b + c

a := a + 1

e := a + b

a1 := b1 + c1

b2 := c1 + 1

d1 := b2 + c1

a2 := a1 + 1

e1 := a2 + b2

Original
 SSA

© Marcus Denker

SSA

Example: Condition

>  Conditions: what to do on control-flow merge?

6

if B then

 a := b

else

 a := c

end

 … a …

if B then

 a1 := b

else

 a2 := c

End

 … a? …

Original
 SSA

© Marcus Denker

SSA

Solution: Φ-Function

>  Conditions: what to do on control-flow merge?

7

if B then

 a := b

else

 a := c

end

 … a …

if B then

 a1 := b

else

 a2 := c

End

a3 := Φ(a1,a2)

 … a3 …

Original
 SSA

© Marcus Denker

SSA

The Φ-Function

>  Φ-functions are always at the beginning of a basic block

>  Select between values depending on control-flow

>  a1 := Φ(a1…ak): the block has k preceding blocks

PHI-functions are all evaluated simultaneously.

8

© Marcus Denker

SSA

SSA and CFG

>  SSA is normally done for control-flow graphs (CFG)

>  Basic blocks are in 3-address form

9

Repeat: Control flow graph

>  A CFG models transfer of control in a program

—  nodes are basic blocks (straight-line blocks of code)

—  edges represent control flow (loops, if/else, goto …)

© Marcus Denker

SSA

10

if x = y then

 S1

else

 S2

end

S3

SSA: a Simple Example

© Marcus Denker

SSA

11

if B then

 a1 := 1

else

 a2 := 2

End

a3 := PHI(a1,a2)

 … a3 …

Repeat: IR

© Oscar Nierstrasz

Intermediate Representation

12

•  front end produces IR

•  optimizer transforms IR to more efficient program

•  back end transform IR to target code

SSA as IR

© Marcus Denker

SSA

13

© Marcus Denker

SSA

Transforming to SSA

>  Problem: Performance / Memory

— Minimize number of inserted Φ-functions

—  Do not spend to much time

>  Many relatively complex algorithms

— We do not go too much into details

—  See literature!

14

© Marcus Denker

SSA

Minimal SSA

>  Two steps:

—  Place Φ-functions

—  Rename Variables

>  Where to place Φ-functions?

>  We want minimal amount of needed Φ

—  Save memory

—  Algorithms will work faster

15

© Marcus Denker

SSA

Path Convergence Criterion

>  There should be a Φ for a at node Z if:

1. There is a block X containing a definition of a.

2. There is a block Y (Y != X) containing a definition of a.

3. There is a nonempty path Pxz of edges from X to Z.

4. There is a nonempty path Pyz of edges from Y to Z.

5. Path Pxz and Pyz do not have any nodes in common other than Z

6. The node Z does not appear within both Pxz and Pyz prior to the

end (although it may appear in one or the other)

16

© Marcus Denker

SSA

Iterated Path-Convergence

>  Inserted Φ is itself a definition!

17

While there are nodes X,Y,Z satisfying conditions 1-5

 and Z does not contain a phi-function for a

 do

 insert PHI at node Z.

A bit slow, other algorithms

used in practice

© Marcus Denker

SSA

Example (Simple)

18

1. block X containing a definition of a

2. block Y (Y != X) containing a definition of a.

3. path Pxz of edges from X to Z.

4. path Pyz of edges from Y to Z.

5. Path Pxz and Pyz do not have any nodes in

 common other than Z

6. The node Z does not appear within both

 Pxz and Pyz prior to the end

© Marcus Denker

SSA

Dominance Property of SSA

>  Dominance: node D dominates node N if every path
from the start node to N goes through D.

 (“strictly dominates”: D!=N)

19

Dominance Property of SSA:

1.  If x is used in a Phi-function in block N,
then the definition of x dominates every
predecessor of N.

2.  If x is used in a non-Phi statement in N,
then the definition of x dominates N

“Definition dominates use”

© Marcus Denker

SSA

Dominance and SSA Creation

>  Dominance can be used to efficiently build SSA

>  Φ-Functions are placed in all basic blocks of the
Dominance Frontier.

>  Dominance Frontier: the set of all nodes N such that D

 dominates an immediate predecessor of N but does not

strictly dominate N.

20

Dominance Frontier

21
 Marcus Denker

SSA

DF(D) = the set of all nodes N such that D dominates an
immediate predecessor of N but does not strictly
dominate N.

Intuition: Nodes at the border of a region of dominance

Dominance and SSA Creation

Dominance Frontier

22
© Marcus Denker

DF(D) = the set of all nodes N such that D dominates an
immediate predecessor of N but does not strictly
dominate N.

?

Dominance and SSA Creation

SSA

Dominance Frontier

23
© Marcus Denker

DF(D) = the set of all nodes N such that D dominates an
immediate predecessor of N but does not strictly
dominate N.

Intuition:

Nodes at the border of a region of dominance

Dominance and SSA Creation

SSA

24
© Marcus Denker

Dominance and SSA Creation

SSA

25
© Marcus Denker

5 Dominates all nodes in
the gray area

Dominance and SSA Creation

SSA

26
© Marcus Denker

DF(5)= {4, 5, 12, 13}

Targets of edges from
the dominates by 5 to
the region not strictly
dominated by 5.

Dominance and SSA Creation

SSA

Simple Example

27
© Marcus Denker

DF(B1)=

DF(B2)=

DF(B3)=

DF(B4)=

SSA

Simple Example

28
© Marcus Denker

DF(B1)={?}

DF(B2)=

DF(B3)=

DF(B4)=

SSA

Simple Example

29
© Marcus Denker

DF(B1)={}

DF(B2)=

DF(B3)=

DF(B4)=

SSA

Simple Example

30
© Marcus Denker

DF(B1)={}

DF(B2)={?}

DF(B3)=

DF(B4)=

SSA

Simple Example

31
© Marcus Denker

DF(B1)={}

DF(B2)={B4}

DF(B3)=

DF(B4)=

SSA

Simple Example

32
© Marcus Denker

DF(B1)={}

DF(B2)={B4}

DF(B3)={B4}

DF(B4)=

SSA

Simple Example

33
© Marcus Denker

DF(B1)={}

DF(B2)={B4}

DF(B3)={B4}

DF(B4)={}

SSA

Simple Example

34
© Marcus Denker

DF(B1)={}

DF(B2)={B4}

DF(B3)={B4}

DF(B4)={}

PHI-Function needed in B4 (for a)

SSA

© Marcus Denker

SSA

Properties of SSA

>  Simplifies many optimizations

—  Every variable has only one definition

—  Every use knows its definition, every definition knows its uses

—  Unrelated variables get different names

>  Examples:

—  Constant propagation

—  Value numbering

—  Invariant code motion and removal

—  Strength reduction

—  Partial redundancy elimination

35

Next Week!

© Marcus Denker

SSA

SSA in the Real World

>  Invented end of the 80s, a lot of research in the 90s

>  Used in many modern compilers

—  ETH Oberon 2

—  LLVM

— GNU GCC 4

—  IBM Jikes Java VM

—  Java Hotspot VM

— Mono

— Many more…

36

© Marcus Denker

SSA

 Transforming out-of SSA

>  Processor cannot execute Φ-Function

>  How do we remove it?

37

© Marcus Denker

SSA

Simple Copy Placement

38

© Marcus Denker

SSA

Problems

>  Problems:

—  Copies need to be removed

— Wrong in some cases after reordering of code

39

Original
 SSA with opt
 Φ removed

© Marcus Denker

SSA

Φ-Congruence

>  Insert Copies

>  Rename Variables

40

Idea: transform program so that all variables in

 Φ are the same:

a1 = Φ(a1, a1)
 a1 = a1
--->

© Marcus Denker

SSA

Φ-Congruence: Definitions

41

Φ-connected(x):

 a3 = Φ(a1, a2)

 a5 = Φ(a3, a4)

 --> a1, a4 are connected

Φ-congruence-class:

 Transitive closure of Φ-connected(x).

© Marcus Denker

SSA

Φ-Congruence Property

42

Φ-congruence property:

 All variables of the same congruence class can be

 replaced by one representative variable without

 changing the semantics.

SSA without optimizations has Φ-congruence

property

 Variables of the congruence class never live

 at the same time (by construction)

Repeat: Liveness

© Oscar Nierstrasz

Code Generation

43

A variable v is live on edge e if there is a path from e
to a use of v not passing through a definition of v

a and b are never live at the same time,
so two registers suffice to hold a, b and c

Interference

© Marcus Denker

SSA

44

A variable v is live on edge e if there is a path from e
to a use of v not passing through a definition of v

a, c live at the same time: interference

© Marcus Denker

SSA

Φ-Removal: Big picture

45

CSSA: SSA with Φ-congruence-property.

 - directly after SSA generation

 - no interference

TSSA: SSA without Φ-congruence-property.

 - after optimizations

 - interference

1.  Transform TSSA into CSSA (fix interference)

2.  Rename Φ-variables

3.  Delete Φ

© Marcus Denker

SSA

Example: Problematic case

46

X2 and X3 interfere
 Solution: Break up

© Marcus Denker

SSA

SSA and Register Allocation

>  Idea: remove Φ as late as possible

>  Variables in Φ-function never live at the same time!

—  Can be stored in the same register

>  Do register allocation on SSA!

47

© Marcus Denker

SSA

SSA: Literature

48

Books:

 - SSA Chapter in Appel

 Modern Compiler Impl. In Java

 - Chapter 8.11 Muchnik:

 Advanced Compiler Construction

SSA Creation:

 Cytron et. al: Efficiently computing Static Single

 Assignment Form and the Control Dependency Graph

 (TOPLAS, Oct 1991)

PHI-Removal: Sreedhar et at. Translating out of Static Single
 Assigment Form (LNCS 1694)

© Marcus Denker

SSA

Summary

49

>  SSA, what it is and how to create it

— Where to place Φ-functions?

>  Transformation out of SSA

—  Placing copies

—  Remove Φ

Next Week: Optimizations

© Marcus Denker

SSA

50

What you should know!

✎  When a program has SSA form.

✎  What is a Φ-function.

✎  When do we place Φ-functions

✎  How to remove Φ-functions

© Marcus Denker

SSA

51

Can you answer these questions?

✎  Why can we not directly generate executable code from
SSA?

✎  Why do we use 3-adress code and CFG for SSA?

© Oscar Nierstrasz

SSA

52

License

>  http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5

You are free:

•  to copy, distribute, display, and perform the work

•  to make derivative works

•  to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

•  For any reuse or distribution, you must make clear to others the license terms of this work.

•  Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

