
9. Optimization

Marcus Denker

2© Marcus Denker

Optimization

Roadmap 

>  Introduction
>  Optimizations in the Back-end
>  The Optimizer
>  SSA Optimizations
>  Advanced Optimizations

3© Marcus Denker

Optimization

Roadmap 

>  Introduction
>  Optimizations in the Back-end
>  The Optimizer
>  SSA Optimizations
>  Advanced Optimizations

4© Marcus Denker

Optimization

Optimization: The Idea

>  Transform the program to improve efficiency

>  Performance: faster execution
>  Size: smaller executable, smaller memory footprint

Tradeoffs: 1) Performance vs. Size

 2) Compilation speed and memory

5© Marcus Denker

Optimization

No Magic Bullet!

>  There is no perfect optimizer
>  Example: optimize for simplicity

Opt(P): Smallest Program

Q: Program with no output, does not stop

Opt(Q)?

6© Marcus Denker

Optimization

No Magic Bullet!

>  There is no perfect optimizer
>  Example: optimize for simplicity

Opt(P): Smallest Program

Q: Program with no output, does not stop

Opt(Q)?

L1 goto L1

7© Marcus Denker

Optimization

No Magic Bullet!

>  There is no perfect optimizer
>  Example: optimize for simplicity

Opt(P): Smallest ProgramQ: Program with no output,
does not stop

Opt(Q)?

L1 goto L1 Halting problem!

8© Marcus Denker

Optimization

Another way to look at it...

>  Rice (1953): For every compiler there is a modified
compiler that generates shorter code.

>  Proof: Assume there is a compiler U that generates the
shortest optimized program Opt(P) for all P.
—  Assume P to be a program that does not stop and has no output
— Opt(P) will be L1 goto L1
—  Halting problem. Thus: U does not exist.

>  There will be always a better optimizer!
—  Job guarantee for compiler architects :-)

9© Marcus Denker

Optimization

Optimization on many levels

>  Optimizations both in the optimizer and back-end

10© Marcus Denker

Optimization

Roadmap 

>  Introduction
>  Optimizations in the Back-end
>  The Optimizer
>  SSA Optimizations
>  Advanced Optimizations

11© Marcus Denker

Optimization

Optimizations in the Backend

>  Register Allocation
>  Instruction Selection
>  Peep-hole Optimization

12© Marcus Denker

Optimization

Register Allocation

>  Processor has only finite amount of registers
—  Can be very small (x86)

>  Temporary variables
—  non-overlapping temporaries can share one register

>  Passing arguments via registers

>  Optimizing register allocation very important for good
performance
—  Especially on x86

13© Marcus Denker

Optimization

Instruction Selection

>  For every expression, there are many ways to realize
them for a processor

>  Example: Multiplication*2 can be done by bit-shift

Instruction selection is a form of optimization

14© Marcus Denker

Optimization

Peephole Optimization

>  Simple local optimization
>  Look at code “through a hole”

—  replace sequences by known shorter ones
—  table pre-computed

store R,a;
load a,R

store R,a;

imul 2,R; ashl 2,R;

Important when using simple instruction selection!

15© Marcus Denker

Optimization

Optimization on many levels

Major work of optimization done in a special phase

Focus of this lecture

16© Marcus Denker

Optimization

Different levels of IR

>  Different levels of IR for different optimizations

>  Example:
—  Array access as direct memory manipulation
— We generate many simple to optimize integer expressions

>  We focus on high-level optimizations

17© Marcus Denker

Optimization

Roadmap 

>  Introduction
>  Optimizations in the Back-end
>  The Optimizer
>  SSA Optimizations
>  Advanced Optimizations

18© Marcus Denker

Optimization

Examples for Optimizations

>  Constant Folding / Propagation
>  Copy Propagation
>  Algebraic Simplifications
>  Strength Reduction
>  Dead Code Elimination

—  Structure Simplifications
>  Loop Optimizations
>  Partial Redundancy Elimination
>  Code Inlining

19© Marcus Denker

Optimization

Constant Folding

>  Evaluate constant expressions at compile time
>  Only possible when side-effect freeness guaranteed

c:= 1 + 3 c:= 4

true not false

Caveat: Floats — implementation could be different
between machines!

20© Marcus Denker

Optimization

Constant Propagation

>  Variables that have constant value, e.g. c := 3
—  Later uses of c can be replaced by the constant
—  If no change of c between!

b := 3
c := 1 + b
d := b + c

b := 3
c := 1 + 3
d := 3 + c

Analysis needed, as b can be assigned more than once!

21© Marcus Denker

Optimization

Copy Propagation

>  for a statement x := y
>  replace later uses of x with y, if x and y have not been

changed.

x := y
c := 1 + x
d := x + c

x := y
c := 1 + y
d := y + c

Analysis needed, as y and x can be assigned more than
once!

22© Marcus Denker

Optimization

Algebraic Simplifications

>  Use algebraic properties to simplify expressions

-(-i) i

b or: true true

Important to simplify code for later optimizations

23© Marcus Denker

Optimization

Strength Reduction

>  Replace expensive operations with simpler ones
>  Example: Multiplications replaced by additions

y := x * 2 y := x + x

Peephole optimizations are often strength reductions

24© Marcus Denker

Optimization

Dead Code

>  Remove unnecessary code
—  e.g. variables assigned but never read

b := 3
c := 1 + 3
d := 3 + c

c := 1 + 3
d := 3 + c

>  Remove code never reached

if (false)
{a := 5}

if (false)
{}

25© Marcus Denker

Optimization

Simplify Structure

>  Similar to dead code: Simplify CFG Structure

>  Optimizations will degenerate CFG

>  Needs to be cleaned to simplify further optimization!

26© Marcus Denker

Optimization

Delete Empty Basic Blocks

27© Marcus Denker

Optimization

Fuse Basic Blocks

28© Marcus Denker

Optimization

Common Subexpression Elimination (CSE)

Common Subexpression:
 - There is another occurrence of the expression whose
 evaluation always precedes this one
 - operands remain unchanged

Local (inside one basic block): When building IR

Global (complete flow-graph)

29© Marcus Denker

Optimization

Example CSE

b := a + 2
c := 4 * b
 b < c?

b := 1

d := a + 2

t1 := a + 2
b := t1
c := 4 * b
 b < c?

b := 1

d := t1

30© Marcus Denker

Optimization

Loop Optimizations

>  Optimizing code in loops is important
—  often executed, large payoff

>  All optimizations help when applied to loop-bodies

>  Some optimizations are loop specific

31© Marcus Denker

Optimization

Loop Invariant Code Motion

>  Move expressions that are constant over all iterations
out of the loop

32© Marcus Denker

Optimization

Induction Variable Optimizations

>  Values of variables form an arithmetic progression

integer a(100)
do i = 1, 100
 a(i) = 202 - 2 * i
endo

integer a(100)
t1 := 202
do i = 1, 100
 t1 := t1 - 2
 a(i) = t1
endo

value assigned to a
decreases by 2 uses Strength Reduction

33© Marcus Denker

Optimization

Partial Redundancy Elimination (PRE)

>  Combines multiple optimizations:
—  global common-subexpression elimination
—  loop-invariant code motion

>  Partial Redundancy: computation done more than once
on some path in the flow-graph

>  PRE: insert and delete code to minimize redundancy.

34© Marcus Denker

Optimization

Code Inlining

>  All optimization up to know where local to one procedure

>  Problem: procedures or functions are very short
—  Especially in good OO code!

>  Solution: Copy code of small procedures into the caller
— OO: Polymorphic calls. Which method is called?

35© Marcus Denker

Optimization

Example: Inlining

a := power2(b) power2(x) {
 return x*x
}

a := b * b

36© Marcus Denker

Optimization

Roadmap 

>  Introduction
>  Optimizations in the Back-end
>  The Optimizer
>  SSA Optimizations
>  Advanced Optimizations

37© Marcus Denker

Optimization

Repeat: SSA

>  SSA: Static Single Assignment Form

>  Definition: Every variable is only assigned once

38© Marcus Denker

Optimization

Properties

>  Definitions of variables (assignments) have a list of all
uses

>  Variable uses (reads) point to the one definition

>  CFG of Basic Blocks

39© Marcus Denker

Optimization

Examples: Optimization on SSA

>  We take three simple ones:

—  Constant Propagation

—  Copy Propagation

—  Simple Dead Code Elimination

40© Marcus Denker

Optimization

Repeat: Constant Propagation

>  Variables that have constant value, e.g. c := 3
—  Later uses of c can be replaced by the constant
—  If no change of c between!

b := 3
c := 1 + b
d := b + c

b := 3
c := 1 + 3
d := 3 + c

Analysis needed, as b can be assigned more than once!

41© Marcus Denker

Optimization

Constant Propagation and SSA

>  Variables are assigned once
>  We know that we can replace all uses by the constant!

b1 := 3
c1 := 1 + b1
d1 := b1 + c1

b1 := 3
c1 := 1 + 3
d1 := 3 + c

42© Marcus Denker

Optimization

Repeat: Copy Propagation

>  for a statement x := y
>  replace later uses of x with y, if x and y have not been

changed.

x := y
c := 1 + y
d := y + c

x := y
c := 1 + y
d := y + c

Analysis needed, as y and x can be assigned more than
once!

43© Marcus Denker

Optimization

Copy Propagation And SSA

>  for a statement x1 := y1
>  replace later uses of x1 with y1

x1 := y1
c1 := 1 + x1
d1 := x1 + c1

x1 := y1
c1 := 1 + y1
d1 := y1 + c1

44© Marcus Denker

Optimization

Dead Code Elimination and SSA

>  Variable is live if the list of uses is not empty.

>  Dead definitions can be deleted
—  (If there is no side-effect)

45© Marcus Denker

Optimization

Roadmap 

>  Introduction
>  Optimizations in the Back-end
>  The Optimizer
>  SSA Optimizations
>  Advanced Optimizations

46© Marcus Denker

Optimization

Advanced Optimizations

>  Optimizing for using multiple processors
—  Auto parallelization
—  Very active area of research (again)

>  Inter-procedural optimizations
— Global view, not just one procedure

>  Profile-guided optimization
>  Vectorization
>  Dynamic optimization

—  Used in virtual machines (both hardware and language VM)

47© Marcus Denker

Optimization

Iterative Process

>  There is no general “right” order of optimizations
>  One optimization generates new opportunities for a

preceding one.
>  Optimization is an iterative process

Compile Time vs. Code Quality

48© Marcus Denker

Optimization

What we have seen... 

>  Introduction
>  Optimizations in the Back-end
>  The Optimizer
>  SSA Optimizations
>  Advanced Optimizations

49© Marcus Denker

Optimization

Literature

>  Muchnick: Advanced
Compiler Design and
Implementation
—  >600 pages on

optimizations

>  Appel: Modern Compiler
Implementation in Java
—  The basics

50© Marcus Denker

Optimization

What you should know!

✎  Why do we optimize programs?
✎  Is there an optimal optimizer?
✎  Where in a compiler does optimization happen?
✎  Can you explain constant propagation?

51© Marcus Denker

Optimization

Can you answer these questions?

✎  What makes SSA suitable for optimization?
✎  When is a definition of a variable live in SSA Form?
✎  Why donʼt we just optimize on the AST?
✎  Why do we need to optimize IR on different levels?
✎  In which order do we run the different optimizations?

52© Marcus Denker

Optimization

License

>  http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
•  to copy, distribute, display, and perform the work
•  to make derivative works
•  to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.

•  For any reuse or distribution, you must make clear to others the license terms of this work.
•  Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

