
© Marcus Denker

TypePlug -- Practical, Pluggable Types

Marcus Denker
with:
Nik Haldiman
Oscar Nierstrasz

University of Bern

© Marcus Denker

Types?

© Marcus Denker

Caveat....

© Marcus Denker

I am not a Type Person

© Marcus Denker

© Marcus Denker

Static types are Evil

© Marcus Denker

© Marcus Denker

© Marcus Denker

© Marcus Denker

© Marcus Denker

Static types are Evil?

© Marcus Denker

Static is Evil!

© Marcus Denker

The Future....

© Marcus Denker

...change

© Marcus Denker

...evolution

© Marcus Denker

...dynamic

© Marcus Denker

...biological

© Marcus Denker

Static typing is Good!

> Programs with failures are rejected
— Reduces errors detected at runtime

> Documentation

> Minor inconvenience, major payoff

http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1
http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1

© Marcus Denker

Static typing is Evil!

> Exactly all cool programs are rejected
— Reflection?!

> Inconvenience is not at all “minor”
— Typed programs hard to change + evolve

> Only the most trivial errors are detected
— We would have found those anyway before deployment

http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1
http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1
http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1
http://www.google.com/search?hl=en&safe=off&client=safari&rls=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=inconvenience&spell=1

Is it possible to have one’s cake and eat it, too?

© Marcus Denker

History: Strongtalk

> Anymorphic. Startup (ca. 1996)
— Self team, from Sun
— Smalltalk VM

> Smalltalk with a Type System

> Observations:
— Types not needed for performance
— Optional Types are nice (Documentation!)

– Can be introduced later when the system is stable

© Marcus Denker

Problem of Mandatory Types

> Types constrain the expressiveness of a Language

> Types make systems more brittle
— Security and Performance
— If types fail, behavior is undefined

> But Type-Systems are proven to be correct!?
— Real world is too complex to formalize
— Implementation will have bugs

© Marcus Denker

Pluggable Types

> Optional: do not change the semantics

> Pluggable: many different ones
— Especially exotic type-systems

> “Type-Systems as Tools” Gilad Bracha, OOPSLA 04:
Pluggable Type-Systems

© Marcus Denker

Pluggable Types: Language

> Optional types do not constrain the expressiveness
— We can ignore the type system if we want
— (or turn it off completely)

> New language models can be realized faster

> Inventing the Future is hard if it needs to be type-save
— Example: NewSpeak

© Marcus Denker

Pluggable Types: Pluggability

> There is a lot of very interesting research on Types

> It is very hard to get it into the hands of Programmers

— Sun will not change Java for you!
— (even though you suffered with java for years for your research)

> Pluggable type-systems free type research from
language adoption!

© Marcus Denker

Pluggable Types: Types as Tools

Type Checker

We are free to explore
the unthinkable in our
Room

(Research!)

© Marcus Denker

Type Inference?

> Isnʼt Type Inference enough?

> Type Inference is cool. But itʼs a Type-system

> No Type Annotation != No Type System

Pluggable Types are very likely to use Inference

© Marcus Denker

Pluggable Types at SCG

> Research about Software Evolution

— Reflection to support dynamic change

> We like to use dynamically typed systems
— Smalltalk / Squeak

> Thinking is not constrained by Types
— Very important!

© Marcus Denker

Methods and Reflection

> Method are Objects
— e.g in Smalltalk

> No high-level model for sub-method elements
— Message sends
— Assignments
— Variable access

> Structural reflection stops at the granularity of methods

30

© Marcus Denker

Sub-Method Reflection

> Many tools work on sub method level
— Profiler, Refactoring Tool, Debugger, Type Checker

> Communication between tools needed
— example: Code coverage

> All tools use different representations
— Tools are harder to build
— Communication not possible

© Marcus Denker

Sub-Method Reflection

> Sub-method Structure
(AST)

> Annotations
— Source visible
— non-visible

> Causally connected

:ReflectiveMethod

annotation

annotation

© Marcus Denker

Sub-Method Reflection: Behavior

> Sub-method Reflection

source code

(AST)

meta-object

activation

condition

links

© Marcus Denker

Sub-Method Reflection: Annotations

> Source visible annotations

> Every node can be annotated
> Semantics: Compiler Plugins

> Type Annotations?

(9 raisedTo: 10000) <:evaluateAtCompiletime:>

© Marcus Denker

TypePlug

> Pluggable types for Squeak

> Based on sub-method reflection framework

> Case-Studies:
— Non-Nil Types
— Class Based Types
— Confined Types Master Thesis:

 Nik Haldiman

© Marcus Denker

The Problem

> Large, untyped code-base

> Overhead for using pluggable types is high

— Existing code needs to be annotated with type information

© Marcus Denker

Example: Non-Nil Type-System

> Declare variables to never be nil

Object subclass: #Line
 typedInstanceVariables: ’startPoint endPoint <:nonNil:>’
 typedClassVariables: ’’
 poolDictionaries: ''
 category: 'Demo'

© Marcus Denker

Non-Nil Type-System

moveHorizontally: anInteger

startPoint := self movePoint: startPoint
 horizontally: anInteger.

endPoint:=self movePoint: endPoint
 horizontally: anInteger

© Marcus Denker

Non-Nil Type-System

moveHorizontally: anInteger

startPoint := self movePoint: startPoint
 horizontally: anInteger.

endPoint:=self movePoint: endPoint
 horizontally: anInteger <- type ’TopType’ of
expression is not compatible with type ’nonNil’ of variable
’endPoint’.

© Marcus Denker

Non-Nil Type-System

movePoint: aPoint horizontally: anInteger

 ↑ (aPoint addX: anInteger y: 0) <:nonNil :>

© Marcus Denker

The Problem (repeat)

> Large, untyped code-base

> Overhead for using pluggable types is high

— Existing code needs to be annotated with type information

© Marcus Denker

Solution

> Only type-check annotated code

> Use type-inference to infer types of non-annotated code

> Explicit type-casts

> Allow external annotations for foreign code

© Marcus Denker

External Type Annotations

> We need to annotate existing code
— Especially libraries and frameworks
— Example: Object>>#hash is <: nonNil :>

> We do not want to change the program code!

> Solution: External Type Annotations
— Added and modified in the TypesBrowser
— Do not change the source
— External representation: Type Packages

© Marcus Denker

Browser

© Marcus Denker

Future Work

> Improve Type-Inference
— Better algorithms
— Explore heuristical type inference

> Type Checking and Reflection
— Use pluggable types to check reflective change

© Marcus Denker

Conclusion

> Pluggable Types
— All positive effects of static types
— Avoid the problems

> TypePlug: Pragmatic framework for Pluggable Types
— Example in the context of Smalltalk/Squeak

© Marcus Denker

Conclusion

> Pluggable Types
— All positive effects of static types
— Avoid the problems

> TypePlug: Pragmatic framework for Pluggable Types
— Example in the context of Smalltalk/Squeak

Questions?

