
© Marcus Denker

Reflection and Context

Marcus Denker
marcus.denker@inria.fr
http://rmod.lille.inria.fr

mailto:denker@iam.unibe.ch
mailto:denker@iam.unibe.ch
http://rmod.lille.inria.fr
http://rmod.lille.inria.fr

© Marcus Denker

Roadmap

> I. Sub-Method Structural Reflection
> II. Partial Behavioral Reflection
> III. Meta Context

© Marcus Denker

Smalltalk

> Smalltalk has support for reflection

> Structural reflection
— Classes / methods are objects
— Can be changed at runtime

> Behavioral reflection
— Current execution reified (thisContext)
— #doesNotUnderstand / MethodWrappers

© Marcus Denker

Can we do better?

> Structural Reflection stops at method level
— Bytecode in the CompiledMethod: Numbers
— Text: Just a String, needs to be compiled

> Behavior hard coded in the Virtual Machine
— Message Sending
— Variable Access

> Both structural and behavioral reflection is limited
— We should do better!

© Marcus Denker

Structural Reflection

> Structure modeled as objects

— e.g. Classes, methods
— Causally connected

> Uses:
— Development environments
— Language extensions and experiments

© Marcus Denker

Methods and Reflection

> Method are Objects
— e.g in Smalltalk

> No high-level model for sub-method elements
— Message sends
— Assignments
— Variable access

> Structural reflection stops at the granularity of methods

© Marcus Denker

Sub-Method Reflection

> Many tools work on sub method level
— Profiler, Refactoring Tool, Debugger, Type Checker

> Communication between tools needed
— Example: Code coverage

> All tools use different representations
— Tools are harder to build
— Communication not possible

© Marcus Denker

Existing Method Representations

> Existing representations for Methods

— Text

— Bytecode

— AST

© Marcus Denker

Requirements

> Causal Connection

> Abstraction Level

> Extensibility

> Persistency

> Size and Performance

© Marcus Denker

Text

> Low level abstraction
— String of characters

> Not causally connected
— Need to call compiler

© Marcus Denker

Bytecode

> Low level abstraction
— Array of Integers

> Missing extensibility
— e.g. for tools

> Mix of base- and meta-level code
— Problems with synthesized code when changing code
— Examples: AOP point-cut residues, reflection hooks

© Marcus Denker

Abstract Syntax Tree

> Not causally connected
— Need to call compiler

> Not extensible
— Fixed set of codes, no way to store meta data

> Not persistent
— Generated by compiler from text, never stored

© Marcus Denker

Solution: Reflective Methods

> Annotated, persistent AST
> Bytecode generated on demand and cached

:ReflectiveMethod

annotation

#(12 13 45 38 98 128
84 72 42 77 22 28 59

32 7 49 51 87 64)

:CompiledMethod

compiledMethod

reflectiveMethod
annotation

Tools VM

© Marcus Denker

Persephone

> Implementation of Reflective Methods for Squeak 3.9

> Smalltalk compiler generates Reflective Methods
— Translated to bytecode on demand

> Open Compiler: Plugins
— Called before code generation
— Transform a copy of the AST

© Marcus Denker

Requirements revisited

> Abstraction Level OK

> Causal Connection OK

> Extensibility OK

> Persistency OK

> Size and Performance OK

© Marcus Denker

Annotations

> Source visible annotations
— extended Smalltalk syntax

> Source invisible annotations
— Reflective API
— Can reference any object

> Every node can be annotated
> Semantics: Compiler Plugins

(9 raisedTo: 10000) <:evaluateAtCompiletime:>

© Marcus Denker

Example: Pluggable Type-System

> Example for textual annotations

bitFromBoolean: aBoolean <:type: Boolean :>
^ (aBoolean ifTrue: [1] ifFalse: [0]) <:type: Integer :>

> Optional, pluggable type-system
> Types stored as annotations in the Reflective Methods

© Marcus Denker

Memory

number of classes memory

Squeak 3.9

Persephone
no reflective
methods

Persephone
reflective methods

2040 15.7 MB

2224 20 MB

2224 123 MB

© Marcus Denker

Roadmap

> I. Sub-Method Structural Reflection
> II. Partial Behavioral Reflection
> III. Meta Context

© Marcus Denker

Behavioral Reflection

> Reflect on the execution
— method execution
— message sending, variable access

> In Smalltalk
— No model of execution below method body
— message sending / variable access hard coded by VM
— #doesNotUnderstand / MethodWrappers

> Reflective capabilities of Smalltalk should be improved!

© Marcus Denker

MetaclassTalk

> Extends the Smalltalk metaclass model
— Similar to CLOS MOP

> Metaclass defines
— message lookup
— access to instance variables

> Problems:
— Reflection only controllable at class boundaries
— No fine-grained selection (e.g. single operations)
— Protocol between base and meta level is fixed

© Marcus Denker

Reflex: Partial Behavioral Reflection

> Hooksets: collection of operation occurrences
> Links

— Bind hooksets to meta-objects
— Define protocol between base and meta

> Goals
— Highly selective reification
— Flexible meta-level engineering

– Protocol specification
– Cross-cutting hooksets

activation

condition

hookset

metaobject

links

Tanter, OOPSLA03

© Marcus Denker

Example: Profiler

> Operation:
— Method execution (around)

> Hookset:
— All execution operations in a package

> Meta-object:
— A profiling tool activation

condition

hookset

metaobject

links

© Marcus Denker

Reflex for Squeak

> Partial Behavioral Reflection pioneered in Java
— Code transformation at load time
— Not unanticipated (it’s Java...)

> Geppetto: Partial Behavioral Reflection for Smalltalk
— For Squeak 3.9 with Bytecode transformation

© Marcus Denker

Problems

> Annotation performance
— Decompile bytecode

> Execution performance
— Preambles for stack manipulation

> Low-level representation
— ifTrue:ifFalse:
— Blocks
— Global variables

© Marcus Denker

Method

Links as Annotations

Meta

Link

> Links can be annotations on the AST

© Marcus Denker

Behavioral Reflection: Flexible

source code

(AST)

meta-object

activation

condition

links

> Very Flexible

© Marcus Denker

Behavioral Reflection: CLOS

source code

(AST)

meta-object

activation

condition

links

> Meta-class MOP (CLOS)

© Marcus Denker

Behavioral Reflection: AOP

source code

(AST)

meta-object

activation

condition

links

> Aspects

© Marcus Denker

Behavioral Reflection: Tracer

> Tracer

source code

(AST)

tracer metaobject

link

© Marcus Denker

Properties

> Very fast annotations
— No decompile!

> On-the-fly code generation
— Only code executed gets generated

> Generated code is fast
— Better then working on bytecode level

© Marcus Denker

Demo

> Show Bounce Demo

© Marcus Denker

Reflectivity

> Prototype implementation in Squeak

— Sub-Method Structure
— Partial Behavioral Reflection

> Download:

http:/scg.unibe.ch/Research/Reflectivity

http://www.iam.unibe.ch/~scg/Research/Reflectivity
http://www.iam.unibe.ch/~scg/Research/Reflectivity

© Marcus Denker

Reflectivity: Pharo

> Not yet...

— Now we can do it for real!
– Engineering vs. Research...

© Marcus Denker

Roadmap

> I. Sub-Method Structural Reflection
> II. Partial Behavioral Reflection
> III. Meta Context

© Marcus Denker

Behavioral Reflection: Flexible

source code

(AST)

meta-object

activation

condition

links

> Let’s use it!

© Marcus Denker

Problem: Recursion

> Behavioral reflection cannot be applied to the whole system

— System classes
— Meta-objects

© Marcus Denker

Example: Beeper

> Call the Beeper from OrderedCollection>>#add

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep.

(OrderedCollection>>#add:) methodNode link: beepLink.

© Marcus Denker

Meta-object Call Recursion

Base Level Meta Object Meta Object

Infinite recursion

#beep send
#add: send

#add: send

#beep send
#add: send

© Marcus Denker

Ad-hoc Solutions

> Code duplication

> Adding special tests

© Marcus Denker

Tower of Interpreters

> Smith, 1982

© Marcus Denker

The Real Problem

Representing Meta-Level Execution

© Marcus Denker

The Meta-Context

> Link enables
MetaContext

Base Level Meta Level

MetaContext activation

MetaContext deactivation

© Marcus Denker

Context-aware Links

> Disable call when
already on the
meta-level

Base Level Meta Level

Stop meta-level call

© Marcus Denker

MetaContext

> Recursion problem solved

operation

meta-object

links

level 0

base

meta

© Marcus Denker

MetaContext

> Meta-level analysis:
— Trace the tracer

operation

meta-object

links

level 0

metameta-

object

link

level 1

base

meta

meta-2

© Marcus Denker

MetaContext

> Recursion problem

> Missing representation of meta-level execution

> Meta-context
— Solves the recursion problem
— Enables meta-level analysis

© Marcus Denker

Rethinking Reflection

> Meta change “shows through”
— Introspection shows implementation
— Recursion and confusion of meta levels

> Reflective change is always global
— Any change is visible to the whole system
— No way to batch multiple changes into one atomic operation

© Marcus Denker

Next steps

> Generalize context model:
— Beyond context as control flow.

> Virtual machine support... to make it practical

> What is the next reflective language kernel?

© Marcus Denker

A lot of open questions...

thats why it is

Research...

?????

© Marcus Denker

Questions

 ?

© Marcus Denker

License

> http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

