
Pharo: Object at
your Fingertips
Marcus Denker
http://www.pharo-project.org

http://www.pharo-project.org

What is it?

Language + Environment

Simple Language (Smalltalk)

Object-Oriented, Dynamic, Reflective

Explore + Change running systems

!

The Ultimate Programming Environment!

Pharo
MIT license
Mac, Linux, Android, iOS, Windows
Great community
Improving steadily
Many excellent libraries

Started 2008

Pharo 1.0 released October 2009
2.0 is the current stable
Pharo3: Early 2014

Plan: 1 Release per year

Language
(in 10 minutes)

Pharo started with Smalltalk-80 (Squeak)

 Language still very much Smalltalk

 But the goal is to develop it further

 Example: Reflective Capabilities

No constructors

No types declaration

No interfaces

No packages/private/protected

No parametrized types

Yet really powerful

Less is better

Objects are instances of Classes

Objects are instances of Classes

!

(10@200)

Objects are instances of Classes

!

(10@200) class

Objects are instances of Classes

!

(10@200) class

Point

Classes are objects too

Classes are objects too

!

Point selectors

!

Classes are objects too

!

Point selectors

!
> an IdentitySet(#eightNeighbors #+ #isZero #sortsBefore: #degrees #printOn: #sideOf:
#fourNeighbors #hash #roundUpTo: #min: #min:max: #max #adaptToCollection:andSend:
#quadrantOf: #crossProduct: #= #nearestPointOnLineFrom:to: #bitShiftPoint: #* #guarded
#insideTriangle:with:with: #grid: #truncateTo: #y #setR:degrees: #normal #directionToLineFrom:to:
#truncated #nearestPointAlongLineFrom:to: #theta #scaleTo: #encodePostscriptOn: #> #asPoint
#extent: #r #roundTo: #max: #interpolateTo:at: #triangleArea:with: #angleWith: #dotProduct:
#isSelfEvaluating #'<=' #to:intersects:to: #'//' #isInsideCircle:with:with: #< #scaleFrom:to: #corner:
#to:sideOf: #x #'>=' #roundDownTo: #onLineFrom:to:within: #transposed #ceiling #angle #basicType
#translateBy: #asFloatPoint #'\\' #adaptToNumber:andSend: #abs #negated #octantOf:
#asIntegerPoint #flipBy:centerAt: #scaleBy: #floor #onLineFrom:to: #isPoint #reflectedAbout: #/ #dist:
#asNonFractionalPoint #bearingToPoint: #reciprocal #rotateBy:centerAt: #rotateBy:about: #rounded
#setX:setY: #squaredDistanceTo: #normalized #veryDeepCopyWith: #- #storeOn: #rect: #deepCopy
#isIntegerPoint #min #adhereTo: #adaptToString:andSend:)

Methods are public

Instance variables are protected

Single Inheritance

Single Inheritance

Object subclass: #Point!
! instanceVariableNames: 'x y'!
! classVariableNames: ''!
! poolDictionaries: ''!
! category: 'Kernel-BasicObjects'

2 instance variables

subclass of Object

3 kinds of messages

Unary messages

Binary messages

Keywords messages

5 factorial!
Transcript cr

3 + 4

3 raisedTo: 10 modulo: 5!
!
Transcript show: 'hello world'

• Anonymous method

• Passed as method argument or stored
• Functions
	 	 fct(x)= x*x+3, fct(2).
!

	 	 fct :=[:x| x * x + 3].
 fct value: 2

!

Blocks

Control structures
Every control structure is realized by message sends

4 timesRepeat: [Beeper beep]

max: aNumber!
! ^ self < aNumber !
! ! ifTrue: [aNumber] !
! ! ifFalse: [self]

<= aPoint !
! "Answer whether the receiver is neither!
! below nor to the right of aPoint."!
!
! ^ x <= aPoint x and: [y <= aPoint y]

A typical method in Point
Method name Argument Comment

Return Binary message
Keyword messageInstance variable

Block

(2@3) <= (5@6) true

Complete Syntax on a PostCard

exampleWithNumber: x

“A method that has unary, binary, and key word messages, declares arguments and
temporaries (but not block temporaries), accesses a global variable (but not and
instance variable), uses literals (array, character, symbol, string, integer, float), uses the
pseudo variable true false, nil, self, and super, and has sequence, assignment, return
and cascade. It has both zero argument and one argument blocks.”

	 |y|

 true & false not & (nil isNil) ifFalse: [self halt].

	 y := self size + super size.

	 #($a #a ‘a’ 1 1.0)

do: [:each | Transcript show: (each class name); show: (each printString); show:
‘ ‘].

 ^ x < y

Environment

Language + Environment are closely linked

Reflection is the basis

Classes, Methods, Packages are Objects

The tools manipulate these Objects

Class Browser

Inspector

Demo: Changing a class at runtime

Demo: Exploring the system

Demo: Inspect World

There is so much more…

Pharo Books

Pharo Success Stories

Continuous API Testing
keep your services under control 24/7

Norbert Hartl norbert@2denker.de
www.2denker.de

eMCee is a montoring service for backend interfaces

- Web application to define backend interfaces

- Monitors reliability of interface periodically

- Sends warning if status of interface changes

- Provides overview graphs about reliability

- Snapshots requests for debugging purposes

mail@2denker.de

Sunday 20 May 12

• Entry Level Track & Trace Product

• Complements T3 Full Product

• One Page Javascript HTML5 / Ajax Client

• REST Back End in Pharo Smalltalk

• Gateways to multiple data providers

Sunday 20 May 12

Pharo Consortium

Managed by INRIA
Who: companies, institutions, user groups
Privileged access to the core development team
Influence priorities of the next development

http://consortium.pharo.org

http://consortium.pharo.org

Future +
Research

Instance Variables as Objects —> Slots

!

Proxy model in the base language

!

Structuring reflective API (—> Mirrors)

More Reflection

AST Everywhere

Used in Tools for Navigation

!

Do we need to store text?

!

Use for Behavioral Reflection

Beyond Text

Put “virtualization” in the language

We already use “Images”

Make the Image a first class concept in the language

System - as - Objects

Open Pharo Sprints
May 2008 Bern
July 2009 Bern
October 2009 Lille
November 2009 Buenos Ares
March 2010 Bern
May 2010 Buenos Ares
June 2010 Bern
June 2010 Bruxelles
July 2010 London
September 2010 Barcelona
September 2010 Lille
January 2011 Lille
July 2011 Lille
October 2011 Bruxelles
February 2012 Bern
April 2012 Lille
September 2012 Ghent
October 2013 Lille
November 2013 Buenos Aires

!

