Advanced Reflection:
Metalinks

Marcus Denker, Inria

http://marcusdenker.de

Lecture at VUB Brussels, October 30, 2019

http://marcusdenker.de

What we know...

e Smalltalk is reflective
e (Classes, Methods, Stack-Frames... are Objects

e Reflective API on all Objects

Take home message

61

- Reflection is based on the meta-class model, thus
iInherently structural.

- Behavioural reflection limited to:

- Method lookup upon failure (doesNotUnderstand:
message)

- Current execution reified (thi1sContext)

Can we do better?

A more fine-grained reflective mechanism seems to be
missing

e |et’s look again at a Method in the Inspector

Inspector on a Method

"N BN AW W 2)

[x = 0O Playground O 2 -

Page > B @ -=

OrderedCollection>>#do:
x - 0O Inspector on a CompiledMethod (OrderedCollection>>#do:)
a CompiledMethod (OrderedCollection>>#do:) B Q a RBMessageNode (RBMessageNode((array at: index))) x
Raw Source Bytecc... Ir AST Header Meta Raw Sourcecode Scopes Tree Meta
¥ RBMethodNode(do: aBlock "Override the superclass for performan) do: aBlock

RBArgumentNode(aBlock) "Override the superclass for performance

¥ RBSequenceNode(firstindex to: lastindex do: [:index | aBlock val) reasons.”

¥ RBMessageNode(firstindex to: lastindex do: [:index | aBlock val)
firstIndex to: lastIndex do: [:index |

RBInstanceVariableNode(firstindex) aBlock value: rray - 'index)l]
RBInstanceVariableNode(lastindex)

¥ RBBlockNode([:index | aBlock value: (array at: index)])
RBArgumentNode(index)
¥ RBSequenceNode(aBlock value: (array at: index))
¥ RBMessageNode(aBlock value: (array at: index))
RBArgumentNode(aBlock)
» RBMessageNode((array at: index))

The AST

AST = Abstract Syntax Tree
Tree Representation of the Method
Produced by the Parser (part of the Compiler)

Used by all tools (refactoring, syntax-highlighting,...)

Smalltalk compiler parse: 'test " (1+2)°

RBMethodNode
RBVariableNode
RBAssignmentNode

RBMessageNode

RBReturnNode

AST

Root

Variable (read and write)
Assignment

A Message (most of them)

Return

Inspect a simple AST

e A very simple Example

Smalltalk compiler parse: 'test 7 (1+2)°

x - 0O Inspector on a RBMethodNode (test * 1 +2) (h 2?2~
a RBMethodNode (test 1 +2) 2 aRBLiteralvalueNode (RBLiteralvalueNode(2)) x 4
Raw Source:.. Scopes Tree Meta Raw Sourcec... Scopes Tree Meta Iﬁ)

¥ RBMethodNode(test *1+2) test A(1+2)

¥ RBSequenceNode(" 1 +2)
¥ RBReturnNode(” 1 + 2)
¥ RBMessageNode(1 +2)
RBLiteralvalueNode(1)
RBLiteralValueNode(2)

AST: Navigation

* TJo make it easy to find and enumerate nodes, there are
some helper methods

e CompiledMethod has: #sendNodes,
#variableNodes, #assignmentNodes

e Every AST node has #nodesDo: and #allChildren

AST: Visitor

e RBProgramNodeVisitor: Visitor Pattern for the AST
e Make subclass, override visit... methods

e Let’s see it in action: Count Message sends

Demo: Visitor

Repeat:The AST

AST = Abstract Syntax Tree
Tree Representation of the Method
Produced by the Parser (part of the Compiler)

Used by all tools (refactoring, syntax-highlighting,...)

Smalltalk compiler parse: 'test " (1+2)°

The Compiler

e Smalltalk compiler -> Compiler Facade
e (Classes define the compiler to use
e You can override method #compiler

e Behind: Compiler Chain

The Compiler

Annotated
Source * AST * AST

RBParser OCSemanticAnalyzer

Annotated
AST * IR * Bytecode
OCASTTranslator/

. IRBytecodeGenerator
IRBuilder Y

AST Integration

e QOriginally just internal to the compiler

e Pharo:

e send #ast to a method to get the AST

e Cached for persistency.

(Point>>#x) ast == (Point>>#x) ast
—> true

AST Integration

e We can navigate from execution to AST

e Example:

[1 + 2] sourceNode ==

thisContext method sourceNode blockNodes first

Compiler: Extensible

All parts can be subclassed

Compiler instance can be setup to use the subclass for
any part (parser, name analysis, translator...)

enable for a class only by implementing #compiler on the
class side

Compiler Plugins

e The AST can be easily transformed
 \We added a Plugin architecture to the Compiler

e enable for a class only by implementing:

compiler
Asuper compiler addPlugin: MyPlugin

The Compiler

Annotated
Source * AST * AST

RBParser OCSemanticAnalyzer

Annotated
AST * IR * Bytecode
OCASTTranslator/

. IRBytecodeGenerator
IRBuilder Y

Plugin

Annotated Annotated
Source » AST * AST ’ AST

RBParser OCSemanticAnalyzer OCCompilerASTPlugin

Annotated
AST * IR * Bytecode

OCASTTranslator/

IRBuilder IRBytecodeGenerator

Plugin: Example

DemoPlugin>>transform

transform
| sends |
sends := ast sendNodes.
sends := sends select: [:each | each selector = #ifTrue:].
sends do: [:each | each replaceWith:

(RBLiteralNode value: true)].

A

ast

e We get all ifTrue: sends

* replace them with true

Back to the topic...

A more fine-grained reflective mechanism seems to be
missing

e Can’t we do something with the AST?

Wouldn’t it be nice..

e With the AST, wouldn’t it be nice if we could use this
structure for Behavioural Reflection?

 |f we could somehow attach a “arrow to the code” that
points to a meta-object

meta-object
for this Send

test

(1 + 2)

We have all pieces...

We have the AST for each method
It is quite simple
We have a compiler in the system

So this should be possible...

The MetaLink

link := Metalink new
metaObject: Halt;
selector: #once;
control: ibefore.

Metalink points to metaObject

Defines a selector to call

And a control attribute: #before, #after, #instead
Installed on a AST node:

(Number>>#sin) ast link: link

The MetaLink

e Can be installed on any AST Node

* Methods will be re-compiled on the fly just before next
execution

* Link installation is very fast
 Changing a method removes all links from this method

e Managing link re-installation has to be done by the user

MetaLink: MetaObject

MetaObject can be any object
Even a Block: [Transcript show ‘hello’]
Install on any Node with #link:

de-install a link with #uninstall

MetaLink: Selector

Metalink defines a message send to the MetaObiject
#selector defines which one

Default is #value

Yes, a selector with arguments is supported

e \We can pass information to the meta-object

MetaLink: Argument

e The arguments define which arguments to pass

* We support a number of reifications

Reilfications

e Reifications define data to be passed as arguments

e Reify —> Make something into an object that is not one
normally

e Example: “All arguments of this message”

Relfications: examples

All nodes: #object #context #class #node
#link

Sends: #arguments #receiver #selector
Method: #arguments #selector

Variable: #value

They are defined as subclasses of class RFReification

Reifications as MetaObject

 We support some special metaObjects:
e #node The AST Node we are installed on
e #object self at runtime

e ffclass The class the links is installed in

MetaLink: Condition

e We can specify a condition for the MetalLink
e Link is active if the condition evaluates to true

e \We can pass reifications as arguments

link := Metalink new
metaObject: Halt;
selector: #once;
condition: [:o0bject | object == 5] arguments: #(object).

(Number>>#sin) ast link: link.

MetalLink: control

e \We can specify when to call the meta-object
e We support #before, #after and #instead

e The instead is very simple: last one wins

Example: Log

e We want to just print something to the Transcript

link := Metalink new
metaObject: [Transcript show: 'Reached Here'].

(Number>>#sin) ast link: link

Recursion Problem

e Before we see more examples: There is a problem

e Imagine we put a MetalLink on some method deep in the
System (e.g new, +, do:).

e Our Meta-Object might use exactly that method, too

q Endless Loop!

Recursion Problem

Solution: Meta-Level
We encode the a level in the execution of the system
Every Link Activation increases the level

A meta-link is just active for one level. (e.g. 0)

link := MetaLink new
metaObject: [Object new];
level: 0.

(Behavior>>#new) ast link: link.

Example: Log

o Better use #level: O

e Nevertheless: be careful! If you add this to method called
often it can be very slow.

link := Metalink new
metaObject: [Transcript show: 'Reached Here'];
level: O.

Example: Counter

e |In the Browser you can add a “counter” to the AST

e See class ExecutionCounter

@ Packages O Projects | @ Flat O Hier. | @ Inst.side O Cla
install 7 Comment X < Behavior X Y] basicNew

ne

Implementors EI.‘ZITIZ—% of t-_ne rece
link := Metalink new R ~

Rename ggp Mitive.

metaObject: self; Add argument

selector: #increase. AT
1 §i¥ Add breakpoint once

node link: link. " §ik Add breakpoint condition..
c Add counter

e

< @ Add watchpoint
ec

- 1 4
B8 Fociat oode _‘f memory' ifTrue
T ——— o] 1

T " e~ r A - 1} . s -

Example: Breakpoint

“Add Breakpoint” in AST (Suggestions) Menu
See class Breakpoint
Break Once

Conditional Break breakLink

A

MetaLink new
metaObject: Break;
selector: #break;
options: options

Example: WatchPoint

e Watchpoint: Record Value at a point in the AST

e Example: Watch event in WorldMorph>>#mouseDown:

Click on background
-> value recorded

x — O WP:Unnamed v

+ 3 T (D P |&E X

[(266@152) mouseDown red 135126 nil]
[(275@294) mouseDown red 127701 nil]

Inspect...

R A

Extensions

A

@ Packages O Projects | @ Flat O

¢ Comment X © WorldMoi

mouseDown: evt
super mouseDown: evt.
self currentWindow ifN

Example: WatchPoint

e |mplementation: class Watchpoint, method install

e example of a #after link with a condition

link := Metalink new
metaObject: self;
selector: #addvValue:;
arguments: #(value);
control: #after;
condition: [recording].

Example: Code Coverage

¢ Small Demo.

e Start with CoverageDemo new openWithSpec

x - O Coverage Demo

ReflectivityExamples

exampleMethod

ARt S

Install Metalink Run Example Code

Example: Code Coverage

e Example of a MetalLink with a #node MetaObject

e Meta-Object is the node that the link is installed on

link := MetaLink new
metaObject: #node;
selector: #tagExecuted.

Interesting Properties

* Cross Cutting
e One Link can be installed multiple times
 Over multiple methods and even Classes

* And across operations (e.g., Send and Assignment) as
long as all reifications requested are compatible

e Fully Dynamic: Links can be added and removed at runtime

 Even by the meta-object of another meta-link!

Example: Accept for Test

e Imagine we want to edit a method that is called often by
the System.

e How do we test it?

e |t would be nice if we could “Accept for Test”

Example: Accept for Test

e Menu in the browser. Quick hack, a Suggestions AS
menu shows for all nodes.

SugsSuggestion subclass: #SugsAcceptForTest
instanceVariableNames: '
classVariableNames: "'
package: 'SmartSuggestions-Suggestion'

label
~'Accept for test'

e We implement our code in the #execute method

Example: Accept for Test

e How we know that we are in a test?

CurrentExecutionEnvironment value isTest

* We can compile the current text buffer

newMethod := context selectedClass compiler
source: context code;
options: #(+ optionParseErrors);
compile.

Example: Accept for Test

Add this code to the beginning of the method:

[taContext :args |
CurrentExecutionEnvironment value isTest ifTrue: [

aContext return: (newMethod
valueWithReceiver: aContext
receiver
arguments: args)]]

e | et’s do that with a MetaLink!

Example: Accept for Test

execute
| newMethod metalink |

newMethod := context selectedClass compiler
source: context code;
options: #(+ optionParseErrors);
compile.

"the link executes the method we just created and returns"”

metalLink := MetaLink new
metaObject: [:aContext :args |
CurrentExecutionEnvironment value isTest
ifTrue: [aContext return: (newMethod
valueWithReceiver: aContext receiver
arguments: args)]];

selector: #value:value:;
arguments: #(context arguments).

context selectedMethod ast link: metalLink

Limitations

e #instead needs more work (e.g to support conditions)

e Keep in mind: next metalink taken into account for next
method activation

e Take care with long running loops!

Help Wanted

e We are always interested in improvements!
e Pharo 8 is under active development.

e Pull Requests Welcome!

