© 2007 Martin v. Lowis

Context-Oriented Programming:
Beyond Layers

Martin v. Lowis
Marcus Denker
Oscar Nierstrasz




Agenda

Context-dependent Behavior
Method Layers (PyContext example)
Implicit Layer Activation

Case Studies

Context Variables

Implementation Notes

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



Context Dependencies

* Programs need to be aware of the context in which they

operate
— what is the state of the environment

— what user is accessing the system
— what mode is the program to be executed in

« Example: current user
— different roles may cause completely different code to be executed
(e.g. administrator may be offered different facilities)

« can be modeled through method layers
— different users acting in the same role access different data
* modeling through method layers is not adequate

« Example: dependency of program output on output device
— In OO system, rendering algorithm spreads over methods of
different classes

Context-oriented Programming: Beyond Layers

© 2007 Martin v. Lowis



SIMQT "A UILIE\ 2002 ©




Method Layers

addition of a few concepts to object-oriented programming

layer: group of classes and methods to be used together in
dynamic scope of execution

layered class: collection of partial definitions of a class, for
different layers

— layered methods: definitions of methods for specific layers
— layered slots: definition of instance attributes for specific layers

(explicit) layer activation: specification of code block that

runs in the context of a layer
— inside the block, each sent message selects the method defined for
that layer
— nested activation: need to consider multiple layers in sequence

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



Example: User-Agent Header

 Web browsers sent User-Agent header to indicate client
software (e.g. MSIE, Firefox, Safari, etc.)
— "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)"

* Web servers sometimes have different behavior depending
on User-Agent header

* Problem: automated web client might need to claim to
operate as a specific user agent

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



© 2007 Martin v. Lowis

Example: User-Agent Header (2)

Assumption: client consists of multiple modules, each using
different software layers to access underlying HTTP libraries
— explicitly specifying User-Agent to the library is not possible
Assumption: client is multi-threaded; different threads may
need to operate in different contexts
— setting User-Agent as a global variable is not possible

HTTP libraries in Python:
— httplib: direct access to protocol
— urllib: unifying library for http, ftp, ...

Context-oriented Programming: Beyond Layers



PyContext: Using Method Layers

« with statement: automatic enter/leave semantics
from useragent import HTTPUserAgent
with HTTPUserAgent("WebCOP").
print "Using useragent layer”
get1()
get2()
* |Importing useragent module automatically defines the layer
and the layered methods
* Disabling layers
from layers import Disabled
with Disabled(Layer):
code

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



Defining Layers

 Inherit from class Layer
— Class can have arbitrary methods, instance variables, etc

class HTTPUserAgent(layers.Layer):
def __init__ (self, agent):
self.agent = agent

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



© 2007 Martin v. Lowis

Defining Layered Methods

Inherit a class (with arbitrary name) from both the layer and
the class to augment

Define methods with the same name as the original methods

— Each method has automatic second parameter "context" (after self,
before explicit method parameters)

Decorate each method with either before, after, or instead

Context: Object indicating the layer activation
— .layer: reference to the layer object
— .result: result of the original method (for after-methods)

— .proceed: callable object denoting the continuation to the original
method (or the next layer)

Context-oriented Programming: Beyond Layers



class HTTPConnection(HTTPUserAgent, httplib.HTTPConnection):

@before
def endheaders(self, context):
with layers.Disabled(HT TPUserAgent):
self.putheader("User-Agent", context.layer.agent)

@instead
def putheader(self, context, header, value):

If header.lower() == 'user-agent":

return
return context.proceed(header, value)

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



Implicit Activation

© 2007 Martin v. Lowis



Implicit Activation

* Problem: explicit activation still needs to identify point in
code where context might change or where context will be

relevant
« Objective: allow addition of layers which get activated

"automatically”
— specifically, when a condition on the environment changes

* Design issues:
— how can the system tell whether a condition becomes true?
« each layer implements an active method

— when should the active method be evaluated?

« each time a layered method is executed whose meaning depends on
whether the layer is active or not

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



7))
Q0
O

-
e
)

)

7p)

(©
@

SIMQT "A UILIE\ 2002 ©




Obijective

« We tried to evaluate what aspects of context are common in
application programs today

* |ssue: how can we find code that depends on context?
— Starting point: assume caller and callee are designed to run within
the same context
— Starting point: look for traditional examples of context
« Selected case studies: large Python applications/libraries
— Django: web application framework

— Roundup: bug tracker
— SCons: automated build tool

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



© 2007 Martin v. Lowis

Results

Web applications (Django, Roundup) need to support
concept of "current" request, including authenticated user,
session data, target URL, etc.

SCons keeps track of context in "environment": information
about the current build goal

These things were often referred to as "context", or showed
up as pass-through parameters in methods

— Searching for "context" revealed further context-dependent code
fragments

— Searching for pass-through parameters not easily possible with pure
text searching; subject for further study

Context information often not used to select different pieces
of code, but merely as lookup keys in associative arrays

Context-oriented Programming: Beyond Layers



Dynamic Variables

© 2007 Martin v. Lowis



Motivation

« case study results lead to identification of additional concept
for context-oriented programming: Dynamic Variables

* in order to avoid pass-through parameters, a variable holding
context should be set in a caller, and then read in a nested

callee

— similar to dynamic variables in functional languages

— requires careful usage, to avoid old problems with dynamic variables
(unintentional access due to naming collisions)
* require explicit read and write operations

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



Dynamic Variables in PyContext

 Example: current HT TP session

1. Declare dynamic variable
_session = Variable()

2. Obtain current variable (e.g. through helper function)
def current_session():
return _session.get()

3. Setup variable from dynamically-read context
def process_request(request):
session = lookup _session(request)
with _session.set(session):
dispatch_request(request)

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



Implementation Notes

* Method layers:

— Dynamically replace methods with wrappers

* Dynamic variables:
1. perform stack walk: O(stack-depth)
2. use thread-local storage: O(1)

2
3
:0
.|
>
£
=
©
=
~
o
o
N
©

Context-oriented Programming: Beyond Layers



Summary

current applications (in particular webapps) show high
degree of context-awareness

context-dependency is not made explicit in the code
layers are a first step to making context explicit

rehabilitation of dynamic variables necessary to support
common cases of context

© 2007 Martin v. Lowis

Context-oriented Programming: Beyond Layers



