
©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Context-Oriented Programming:
Beyond Layers

Martin v. Löwis

Marcus Denker

Oscar Nierstrasz

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Agenda

• Context-dependent Behavior

• Method Layers (PyContext example)

• Implicit Layer Activation

• Case Studies

• Context Variables

• Implementation Notes

2

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Context Dependencies

• Programs need to be aware of the context in which they
operate
– what is the state of the environment

– what user is accessing the system

– what mode is the program to be executed in

• Example: current user
– different roles may cause completely different code to be executed

(e.g. administrator may be offered different facilities)
• can be modeled through method layers

– different users acting in the same role access different data
• modeling through method layers is not adequate

• Example: dependency of program output on output device
– In OO system, rendering algorithm spreads over methods of

different classes

3

©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Layers

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Method Layers

• addition of a few concepts to object-oriented programming

• layer: group of classes and methods to be used together in
dynamic scope of execution

• layered class: collection of partial definitions of a class, for
different layers
– layered methods: definitions of methods for specific layers

– layered slots: definition of instance attributes for specific layers

• (explicit) layer activation: specification of code block that
runs in the context of a layer
– inside the block, each sent message selects the method defined for

that layer

– nested activation: need to consider multiple layers in sequence

5

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Example: User-Agent Header

• Web browsers sent User-Agent header to indicate client
software (e.g. MSIE, Firefox, Safari, etc.)
– "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)"

• Web servers sometimes have different behavior depending
on User-Agent header

• Problem: automated web client might need to claim to
operate as a specific user agent

6

Client

HTTP Library
HTTP Server

HTTP
Request

User-Agent

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Example: User-Agent Header (2)

• Assumption: client consists of multiple modules, each using
different software layers to access underlying HTTP libraries
– explicitly specifying User-Agent to the library is not possible

• Assumption: client is multi-threaded; different threads may
need to operate in different contexts
– setting User-Agent as a global variable is not possible

• HTTP libraries in Python:
– httplib: direct access to protocol

– urllib: unifying library for http, ftp, ...

7

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

PyContext: Using Method Layers

• with statement: automatic enter/leave semantics
from useragent import HTTPUserAgent

with HTTPUserAgent("WebCOP"):

 print "Using useragent layer"

 get1()

 get2()

• Importing useragent module automatically defines the layer
and the layered methods

• Disabling layers
from layers import Disabled

with Disabled(Layer):

code

8

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Defining Layers

• Inherit from class Layer
– Class can have arbitrary methods, instance variables, etc

class HTTPUserAgent(layers.Layer):

 def __init__(self, agent):

 self.agent = agent

9

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Defining Layered Methods

• Inherit a class (with arbitrary name) from both the layer and
the class to augment

• Define methods with the same name as the original methods
– Each method has automatic second parameter "context" (after self,

before explicit method parameters)

• Decorate each method with either before, after, or instead

• Context: Object indicating the layer activation
– .layer: reference to the layer object

– .result: result of the original method (for after-methods)

– .proceed: callable object denoting the continuation to the original
method (or the next layer)

10

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

class HTTPConnection(HTTPUserAgent, httplib.HTTPConnection):

 # Always add a User-Agent header

 @before

 def endheaders(self, context):

 with layers.Disabled(HTTPUserAgent):

 self.putheader("User-Agent", context.layer.agent)

 # suppress other User-Agent headers added

 @instead

 def putheader(self, context, header, value):

 if header.lower() == 'user-agent':

 return

 return context.proceed(header, value)

11

©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Implicit Activation

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Implicit Activation

• Problem: explicit activation still needs to identify point in
code where context might change or where context will be
relevant

• Objective: allow addition of layers which get activated
"automatically"
– specifically, when a condition on the environment changes

• Design issues:
– how can the system tell whether a condition becomes true?

• each layer implements an active method

– when should the active method be evaluated?
• each time a layered method is executed whose meaning depends on

whether the layer is active or not

13

©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Case Studies

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Objective

• We tried to evaluate what aspects of context are common in
application programs today

• Issue: how can we find code that depends on context?
– Starting point: assume caller and callee are designed to run within

the same context

– Starting point: look for traditional examples of context

• Selected case studies: large Python applications/libraries
– Django: web application framework

– Roundup: bug tracker

– SCons: automated build tool

15

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Results

• Web applications (Django, Roundup) need to support
concept of "current" request, including authenticated user,
session data, target URL, etc.

• SCons keeps track of context in "environment": information
about the current build goal

• These things were often referred to as "context", or showed
up as pass-through parameters in methods
– Searching for "context" revealed further context-dependent code

fragments

– Searching for pass-through parameters not easily possible with pure
text searching; subject for further study

• Context information often not used to select different pieces
of code, but merely as lookup keys in associative arrays

16

©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Dynamic Variables

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Motivation

• case study results lead to identification of additional concept
for context-oriented programming: Dynamic Variables

• in order to avoid pass-through parameters, a variable holding
context should be set in a caller, and then read in a nested
callee
– similar to dynamic variables in functional languages

– requires careful usage, to avoid old problems with dynamic variables
(unintentional access due to naming collisions)

• require explicit read and write operations

18

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Dynamic Variables in PyContext

• Example: current HTTP session

1. Declare dynamic variable
_session = Variable()

2. Obtain current variable (e.g. through helper function)
def current_session():
 return _session.get()

3. Setup variable from dynamically-read context
def process_request(request):
 session = lookup_session(request)
 with _session.set(session):
 dispatch_request(request)

19

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Implementation Notes

• Method layers:
– Dynamically replace methods with wrappers

• Dynamic variables:
1. perform stack walk: O(stack-depth)

2. use thread-local storage: O(1)

20

Context-oriented Programming: Beyond Layers©
 2

00
7

M
ar

ti
n

 v
. L

ö
w

is

Summary

• current applications (in particular webapps) show high
degree of context-awareness

• context-dependency is not made explicit in the code

• layers are a first step to making context explicit

• rehabilitation of dynamic variables necessary to support
common cases of context

21

