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Context Dependencies

* Programs need to be aware of the context in which they

operate
— what is the state of the environment

— what user is accessing the system
— what mode is the program to be executed in

« Example: current user
— different roles may cause completely different code to be executed
(e.g. administrator may be offered different facilities)

« can be modeled through method layers
— different users acting in the same role access different data
* modeling through method layers is not adequate

« Example: dependency of program output on output device
— In OO system, rendering algorithm spreads over methods of
different classes
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Method Layers

addition of a few concepts to object-oriented programming

layer: group of classes and methods to be used together in
dynamic scope of execution

layered class: collection of partial definitions of a class, for
different layers

— layered methods: definitions of methods for specific layers
— layered slots: definition of instance attributes for specific layers

(explicit) layer activation: specification of code block that

runs in the context of a layer
— inside the block, each sent message selects the method defined for
that layer
— nested activation: need to consider multiple layers in sequence
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Example: User-Agent Header

 Web browsers sent User-Agent header to indicate client
software (e.g. MSIE, Firefox, Safari, etc.)
— "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)"

* Web servers sometimes have different behavior depending
on User-Agent header

* Problem: automated web client might need to claim to
operate as a specific user agent
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Example: User-Agent Header (2)

Assumption: client consists of multiple modules, each using
different software layers to access underlying HTTP libraries
— explicitly specifying User-Agent to the library is not possible
Assumption: client is multi-threaded; different threads may
need to operate in different contexts
— setting User-Agent as a global variable is not possible

HTTP libraries in Python:
— httplib: direct access to protocol
— urllib: unifying library for http, ftp, ...
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PyContext: Using Method Layers

« with statement: automatic enter/leave semantics
from useragent import HTTPUserAgent
with HTTPUserAgent("WebCOP").
print "Using useragent layer”
get1()
get2()
* |Importing useragent module automatically defines the layer
and the layered methods
* Disabling layers
from layers import Disabled
with Disabled(Layer):
code
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Defining Layers

 Inherit from class Layer
— Class can have arbitrary methods, instance variables, etc

class HTTPUserAgent(layers.Layer):
def __init__ (self, agent):
self.agent = agent
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Defining Layered Methods

Inherit a class (with arbitrary name) from both the layer and
the class to augment

Define methods with the same name as the original methods

— Each method has automatic second parameter "context" (after self,
before explicit method parameters)

Decorate each method with either before, after, or instead

Context: Object indicating the layer activation
— .layer: reference to the layer object
— .result: result of the original method (for after-methods)

— .proceed: callable object denoting the continuation to the original
method (or the next layer)
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class HTTPConnection(HTTPUserAgent, httplib.HTTPConnection):

@before
def endheaders(self, context):
with layers.Disabled(HT TPUserAgent):
self.putheader("User-Agent", context.layer.agent)

@instead
def putheader(self, context, header, value):

If header.lower() == 'user-agent":

return
return context.proceed(header, value)
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Implicit Activation
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Implicit Activation

* Problem: explicit activation still needs to identify point in
code where context might change or where context will be

relevant
« Objective: allow addition of layers which get activated

"automatically”
— specifically, when a condition on the environment changes

* Design issues:
— how can the system tell whether a condition becomes true?
« each layer implements an active method

— when should the active method be evaluated?

« each time a layered method is executed whose meaning depends on
whether the layer is active or not
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Obijective

« We tried to evaluate what aspects of context are common in
application programs today

* |ssue: how can we find code that depends on context?
— Starting point: assume caller and callee are designed to run within
the same context
— Starting point: look for traditional examples of context
« Selected case studies: large Python applications/libraries
— Django: web application framework

— Roundup: bug tracker
— SCons: automated build tool
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Results

Web applications (Django, Roundup) need to support
concept of "current" request, including authenticated user,
session data, target URL, etc.

SCons keeps track of context in "environment": information
about the current build goal

These things were often referred to as "context", or showed
up as pass-through parameters in methods

— Searching for "context" revealed further context-dependent code
fragments

— Searching for pass-through parameters not easily possible with pure
text searching; subject for further study

Context information often not used to select different pieces
of code, but merely as lookup keys in associative arrays
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Dynamic Variables
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Motivation

« case study results lead to identification of additional concept
for context-oriented programming: Dynamic Variables

* in order to avoid pass-through parameters, a variable holding
context should be set in a caller, and then read in a nested

callee

— similar to dynamic variables in functional languages

— requires careful usage, to avoid old problems with dynamic variables
(unintentional access due to naming collisions)
* require explicit read and write operations
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Dynamic Variables in PyContext

 Example: current HT TP session

1. Declare dynamic variable
_session = Variable()

2. Obtain current variable (e.g. through helper function)
def current_session():
return _session.get()

3. Setup variable from dynamically-read context
def process_request(request):
session = lookup _session(request)
with _session.set(session):
dispatch_request(request)
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Implementation Notes

* Method layers:

— Dynamically replace methods with wrappers

* Dynamic variables:
1. perform stack walk: O(stack-depth)
2. use thread-local storage: O(1)
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Summary

current applications (in particular webapps) show high
degree of context-awareness

context-dependency is not made explicit in the code
layers are a first step to making context explicit

rehabilitation of dynamic variables necessary to support
common cases of context
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